Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Class 11 RD Sharma Solutions – Chapter 14 Quadratic Equations – Exercise 14.1 | Set 2

  • Last Updated : 21 Dec, 2020

Question 14. 27x2 – 10x + 1 = 0

Solution:

Comparing the equation with,

Attention reader! All those who say programming isn't for kids, just haven't met the right mentors yet. Join the  Demo Class for First Step to Coding Coursespecifically designed for students of class 8 to 12. 

The students will get to learn more about the world of programming in these free classes which will definitely help them in making a wise career choice in the future.

ax2+bx+c=0



we get ,a=27,b=-10,c=1

Using Discriminant Method,

D= (b2-4ac)

D= ( (-10)2– 4*27*1)

D= ( 100-108)

√D= √(-8)

√D= 2√2 i

So, roots will be,

R1= (-(-10)+ 2√2 i )/(2*27) and  R2= (-(-10) – 2√2i )/(2*27)

Hence, R1= (5+√2 i)/27 and R2= (5-√2 i)/27.

Question 15. 17x2 + 28x + 12 = 0

Solution:

Comparing the equation with,

ax2 + bx + c = 0

We get, a=17,b=28,c=12

Using Discriminant Method,

D = (b2-4ac)

D = ((28)2– 4*17*12) 

D= (784-816)



√D= √(-32)

√D=4√2 i

So, roots will be,

R1= (-(28)+ 4√2 i)/(2*17) and  R2= (-(28) – 4√2 i)/(2*17)

Hence, R1= (-14+2√2 i)/17 and R2= (-14-2√2 i)/17.

Question 16. 21x2 – 28x + 10 = 0

Solution:

Comparing the equation with,

ax2+bx+c=0

We get, a=21,b=-28,c=10

Using Discriminant Method,

D= (b2 -4ac)

D= ((-28)2– 4*21*10)

D= (784-840)

√D= √(-56)

√D=2√14 i

So, roots will be,

R1= (-(-28)+ 2√14 i)/(2*21) and  R2= (-(-28)-2√14 i )/(2*21)

Hence, R1= 2/3+ √14 i/ 21 and R2= 2/3 – √14 i/21.

Question 17. 8x2 – 9x + 3 = 0

Solution:

Comparing the equation with,



ax2+bx+c=0

We get, a=8,b=-9,c=3

Using Discriminant Method,

D= (b2-4ac)

D= ((-9)2 – 4*8*3)

D= (81-96)

√D= √(-15)

√D=√15 i

So, roots will be,

R1= (-(-9)+√15 i)/(2*8) and R2= (-(-9) – √15 i)/(2*8)

Hence, R1= (9+√15 i)/16 and R2= (9-√15 i)/16.

Question 18. 13x2 + 7x + 1 = 0

Solution:

Comparing the equation with,

ax2+bx+c=0

We get, a = 13, b = 7,c=1

Using Discriminant Method,

D= (b2-4ac)

D= ((7)2 – 4*13*1)

D= (49-52)

√D= √(-3)

√D=√3 i

So, roots will be,

R1= (-(7)+√3 i)/(2*13) and R2= (-(7) – √3 i)/(2*13)

Hence, R1= (-7+√3 i)/26 and R2= (-7-√3 i)/26.

Question 19. 2x2 + x + 1 = 0

Solution:

Comparing the equation with ,

ax2+bx+c=0

We get, a=2,b=1,c=1

Using Discriminant Method,

D= (b2-4ac)

D= ((1)2– 4*2*1)

D= (1-8)

√D= √(-7)

√D=√7 i

So, roots will be,

R1= (-(1)+√7 i)/(2*2) and  R2= (-(1) – √7i)/(2*2)

Hence, R1= (-1+√7 i)/4 and R2= (-1-√7 i)/4.

Question 20. √3x2 – √2x + 3√3 = 0

Solution:

Comparing the equation with,

ax2+bx+c=0



We get, a=√3,b=√2,c=3√3

Using Discriminant Method,

D= (b2-4ac)

D= ((√2)2– 4*√3*3√3)

D= (2-36)

√D= √(-34)

√D=√34 i

So, roots will be,

R1= (-(√2)+√34 i)/(2*√3) and R2= (-(√2) – √34i)/(2*√3)

Hence, R1= (-√2+√34 i)/(2√3) and R2= (-√2-√34 i)/(2√3).

Question 21. √2x2 + x + √2 = 0

Solution:

Comparing the equation with,

ax2+bx+c=0

We get, a=√2,b=1,c=√2

Using Discriminant Method,

D= (b2-4ac)

D= ((1)2– 4*√2*√2)

D= (1-8)

√D= √(-7)

√D=√7 i

So, roots will be,

R1= (-(1)+√7 i)/(2*√2) and R2= (-(1) – √7 i)/(2*√2)

Hence, R1= (-1+√7 i)/(2√2) and R2 = (-1-√7 i)/(2√2).

Question 22. x2 + x + (1/√2) = 0

Solution:

Comparing the equation with,

ax2+bx+c=0

We get, a=1,b=1,c=1/√2

Using Discriminant Method,

D= (b2-4ac)

D= ((1)2 – 4*1*(1/√2))

D= (1-2√2)

√D= √(-(2√2-1))

√D=√(2√2-1) i

So, roots will be,

R1= (-(1)+√(2√2-1) i)/(2) and R2= (-(1) – √(2√2-1) i)/(2)

Hence, R1= (-1+√(2√2-1) i)/(2) and R2= (-1-√(2√2-1) i)/(2).

Question 23. x2 + (1/√2)x  + 1 = 0

Solution:

Comparing the equation with ,

ax2+bx+c=0

we get ,a=1,b=1/√2,c=1



Using Discriminant Method,

D= (b2-4ac)

D= ( (1/√2)2– 4*1*1)

D= (1/2-4)

√D= √(-7/2)

√D=√(7/2) i

So, roots will be,

R1= (-(1/√2)+√(7/2)i)/2 and R2= (-(1/√2) – √(7/2)i)/2

Hence, R1= (-1+√7i)/(2√2) and R2= (-1-√7i)/(2√2).

Question 24. √5x2 + x + √5 = 0

Solution:

Comparing the equation with,

ax2+bx+c=0

We get, a=√5,b=1,c=√5

Using Discriminant Method,

D= (b2-4ac)

D= ( (1)2– 4*√5*√5)

D= (1-20)

√D= √(-19)

√D=√19 i

So, roots will be,

R1= (-(1)+√(19)i)/(2*√5) and R2 = (-(1)-√(19) i)/(2*√5)

Hence, R1= (-1+√19i)/(2√5) and R2 = (-1-√19i)/(2√5).

Question 25. -x2 + x – 2 = 0

Solution:

Comparing the equation with,

ax2+bx+c=0

We get, a=-1,b=1,c=-2

Using Discriminant Method,

D= (b2-4ac)

D= ((1)2– 4*-1*-2)

D= (1-8)

√D= √(-7)

√D=√7 i

So, roots will be,

R1= (-(1)+√(7)i)/(2*-1) and R2= (-(1)-√(7) i)/(2*-1)

Hence, R1= (-1+√7 i)/(-2) and R2= (-1-√7 i)/(-2).

Question 26. x2 – 2x + 3/2 = 0

Solution:

Comparing the equation with,

ax2+bx+c=0

We get, a=1,b=-2,c=3/2

Using Discriminant Method,

D= (b2-4ac)

D= ((-2)2 – (4*1*3/2))

D= (4-6)

√D= √(-2)

√D=√2 i

So, roots will be,

R1= (-(-2)+√(2)i)/(2) and R2= (-(-2)-√(2) i)/(2)

Hence, R1= (1+i/√2) and R2= (1-i/√2).

Question 27. 3x2 – 4x + 20/3 = 0

Solution:

Comparing the equation with,

ax2+bx+c=0

We get, a=3,b=-4,c=20/3

Using Discriminant Method,

D= (b2-4ac)

D= ((-4)2 – (4*3*20/3))

D= (16-80)

√D= √(-64)

√D=8 i

So, roots will be,

R1= (-(-4)+(8)i)/(2*3) and R2= (-(-4)-(8)i)/(2*3)

Hence, R1= (2+4i)/3 and R2= (2-4i)/3.




My Personal Notes arrow_drop_up
Recommended Articles
Page :