Related Articles

# Class 10 RD Sharma Solutions – Chapter 8 Quadratic Equations – Exercise 8.6 | Set 1

• Last Updated : 16 May, 2021

### Question 1. Determine the nature of the roots of following quadratic equations :

(i) 2x² – 3x + 5 = 0

(ii) 2x² – 6x + 3 = 0

Attention reader! All those who say programming isn't for kids, just haven't met the right mentors yet. Join the  Demo Class for First Step to Coding Coursespecifically designed for students of class 8 to 12.

The students will get to learn more about the world of programming in these free classes which will definitely help them in making a wise career choice in the future.

(iii) 3/5 x² – 2/3 x + 1 = 0

(iv) 3x² – 4√3 x + 4 = 0

(v) 3x² – 2√6 x + 2 = 0

Solution:

(i) 2x² – 3x + 5 = 0

Here a=2, b=-3, c=5

D=b2-4ac=(-3)2-4*2*5

=-9-40=-31

D<0

Roots are not real

(ii) 2x² – 6x + 3 = 0

Here a=2, b=-6, c=3

D=b2-4ac

=(-6)2-4*2*3=36-24=12

D>0

Roots are real and distinct

(iii) 3/5 x² – 2/3 x + 1 = 0

Here a=3/5, b=-2/3, c=1

Discriminant (D)=b2-4ac D<0

Roots are not real

(iv) 3x² – 4√3 x + 4 = 0

Here a=3, b=-4√3, c=4

D=b2-4ac

=(-4√3)2-4*3*4=48-48=0

D=0

Roots are real and equal

(v) 3x² – 2√6 x + 2 = 0

Here a=3, b=– 2√6, c=2

Discriminant (D)=b2-4ac

=(– 2√6)2-4*3*2=24-24=0

D=0

Roots are real and equal

### Question 2. Find the values of k for which the roots are real and equal in each of the following equations :

(i) kx² + 4x + 1 = 0

Solution:

Here a=k, b=4, c=1

Discriminant(D)=b2-4ac

=(4)2-4*k*1

=16-4k

Roots are real and equal

D=0

16-4k=0⇒4k=16

k=16/4=4

Hence k=4

(ii) kx² – 2√5 x + 4 = 0

Solution:

Here a=k, b=-2√5, c=4

Discriminant(D)=b2-4ac

=( – 2√5 )-4*k*4=20-16k

Roots are real and equal

D=0

20-16k=0⇒ 16k=20

k=20/16=5/4

Hence k=5/4

(iii) 3x² – 5x + 2k = 0

Solution:

Here a=3, b=-5, c=2k

Discriminant (D)=b2-4ac

=(-5)2-4*3*2k

=25-24k

Roots are real and equal

D=0

25-24k=0⇒24k=25

k=25/24

(iv) 4x²+ kx + 9 = 0

Solution:

Here a=4, b=k, c=9

Discriminant (D)=b2-4ac

=k2-4*4*9=k2-144

Roots are real and equal

k2-144=0⇒k2=144=(±12)2

(v) 2kx² – 40x + 25 = 0

Solution:

Here a=2k, b=-40, c=25

Discriminant(D)=b2-4ac

=(-40)2-4*2k*25

=1600-200k

Roots are real and equal

D=0

1600-200k=0⇒200k=1600

k=1600/200=8

Hence k=8

(vi) 9x² – 24x + k = 0

Solution:

Here a=9, b=-24, c=k

Discriminant(D)=b2-4ac

=(-24)2-4*9*k

=576-36k

Roots are real and equal

D=0

576-36k=0

36k=576⇒k=576/36=16

k=16

(vii) 4x² – 3kx +1 = 0

Solution:

Here a=4, b=-3k, c=1

Discriminant (D)=b2-4ac

=(-3k)2-4*4*1

=9k2-16

Roots are real and equal

D=0

9k2-16=0⇒9k2=16

k2=16/9= (viii) x² – 2 (5 + 2k) x + 3 (7 + 10k) = 0

Solution:

Here a=1, b=-2(5+2k) and c=3(7+10k)

Discriminant (D)=b2-4ac

[-2(5+2k)]2-4*1*3(7+10k)

=4(25+4k2+20k)-12(7+10k)

=100+16k2+80k-84-120k

16k2-40k+16

Roots are real and equal

D=0

16k2-40k+16=0

2k2-5k+2=0

2k2-4k-k+2=0

2k(k-2)-1(k-2)=0

(k-2)(2k-1)=0

Either k-2=0, then k=2 or 2k-1=0, then 2k=1⇒k=1/2

Hence, k=2, 1/2

(ix) (3k + 1) x² + 2(k + 1) x + k = 0

Solution:

Here a=3k+1, b=2(k+1), c=k

Discriminant(D)=b2-4ac

=[2(k+1)]2-4*(3k+1)*k

=4(k2+2k+1)-4k(3k+1)

=4k2+8k+4-12k2-4k

-8k2+4k+4

Roots are real and equal

D=0

-8k2+4k+4=0

2k2-k-1=0 (Dividing by -4)

2k2-2k+k-1= {Therefore -2=-2*1

-1=-2+1}

2k(k-1)+1(k-1)=0

(k-1)(2k+1)=0

Either k-1=0, then k=1 or 2k+1=0, then 2k=-1⇒k=-1/2

k=1,-1/2

(x) kx² + kx + 1 = – 4x² – x

Solution:

kx² +4x2+kx+x+1=0

(k+4)x2+(k+1)x+1=0

Here a=k+4, b=k+1, c=1

Discriminant(D)=b2-4ac

=(k+1)2-4*(k+4)*1

=k2+2k+1-4k-16

=k2-2k-15

Roots are real and equal

D=0

k2-2k-15=0

k2-5k+3k-15=0 {Therefore -15=-5*3

-2=-5+3}

k(k-5)+3(k-5)=0

(k-5)(k+3)=0

Either k-5=0, then k=5

or k+3=0, then k=-3

Hence k=5,-3

(xi) (k + 1) x² + 2 (k + 3) x + (k + 8) = 0

Solution:

Here a=k+1, b=2(k+3), c=k+8

Discriminant(D)=b2-4ac

=[2(k+3)]2-4(k+1)(k+8)

=4(k2+6k+9)-4)(k2+9k+8)

=4k2+24k+36-4k2-36k-32

=-12k+4

Roots are real and equal

D=0

-12k+4=0

12k=4⇒k=4/12=1/3

Hence k=1/3

(xii) x² – 2kx + 7k – 12 = 0

Solution:

Here a=1, b=-2k, c=(7k-12)

Discriminant(D)=b2-4ac

=(-2k)2-4*1*(7k-12)

=4k2-4(7k-12)

=4k2-28k+48

Roots are real and equal

D=0

4k2-28k+48=0

k2-7k+12=0 (Dividing by 4 )

k2-3k-4k+12=0 {12=-3*(-4)

-7=-3-4}

k(k-3)-4(k-3)=0

(k-3)(k-4)=0

Either, k-3=0, then k=3

or k-4=0, then k=4

Therefore, k=3,4

(xiii) (k + 1) x² – 2 (3k + 1) x + 8k + 1 = 0

Solution:

Here a=k+1, b=-2(3k+1), c=8k+1

Discriminant(D)=b2-4ac

=[-2(3k+1)2-4*(k+1)(8k+1)]

=4(9k2+6k+1)-4(8k2+9k+1)

=36k2+24k+4-32k2-36-4

=4k2-12k

Roots are real and equal

D=0

4k2-12k=0

k2-3k=0 ————–(Dividing by 4)

k(k-3)=0

Either k=0

or k-3=0, then k=3

k=3,0

(xiv) 5x² – 4x + 2 + k (4x² – 2x – 1) = 0

Solution:

5x2-4x+2+4kx2-2kx-k=0

(5+4k)x2-(4+2k)x+(2-k)=0

Here a=5+4k, b=-(4+2k), c=2-k

Discriminant (D)=b2-4ac

=[-(4+2k)]2-4*(5+4k)(2-k)

=16+4k2+16k-4(10-5k+8k-4k2)

=16+4k2+16k-40+20k-32k+16k2

=20k2+4k-24

Roots are real and equal

D=0

20k2+4k-24=0

5k2+k-6=0 —–(Dividing by 4)

5k2+6k-5k-6=0

k(5k+6)-1(5k+6)=0

(5k+6)(k-1)=0

Either 5k+6=0, then 5k=-6⇒k=-6/5

or k-1=0, then k=1

k=1, (xv) (4 – k) x² + (2k + 4) x (8k + 1) = 0

Solution:

Here a=4-k, b=2k+4, c=8k+1

Discriminant (D)=b2-4ac

=(2k+4)2-4*(4-k)(8k+1)

=4k2+16k+16-4(32k+4-8k2-k)

=4k2+16k+16-128k-16+32k2+4k

=36k2-108k

Roots are real and equal

36k2-108k=0

k2-3k=0⇒k(k-3)=0

Either k=0

or k-3=0, then k=3

Hence k=0,3

(xvi) (2k + 1) x² + 2 (k + 3) x (k + 5) = 0

Solution:

Here a=2k+1, b=2(k+3), c=k+5

Discriminant (D)=b2-4ac

=[2(k+3)]2-4(2k+1)(k+5)

=4(k2+6k+9)-4(2k2+10k+k+5)

=4k2+24k+36-8k2-40k-4k-20

=-4k2-20k+16

Roots are real and equal D=0

-4k2-20k+16=0

k2+5k-4=0 ———-(Dividing by -4)

Here a=1, b=5, c=-4

Discriminant (D)=b2-4ac

=(5)2-4*1*(-4)=25+16=41  (xvii) 4x² – 2 (k + 1) x + (k + 4) = 0

Solution:

Here a=4, b=-2(k+1), c=k+4

Discriminant (D)=b2-4ac

=[-2(k+1)]2-4*4*(k+4)

=4(k2+2k+1)-16(k+4)

=4k2+8k+4-16k-64

=4k2-8k-12

Roots are real and equal

D=0

4k2-8k-60=0

k2-2k-15=0 ————-(Dividing by 4)

k2-5k+3k-15=0

k(k-5)+3(k-5)=0

(k-5)(k+3)=0

Either k-5=0, then k=5

or k+3=0, then k=-3

k=5,-3

(xviii) 4x² (k + 1) x + (k + 1) = 0

Solution:

Here a=4, b=-2(k+1), c=k+1

Discriminant (D)=b2-4ac

=[-2(k+1)]2-4*4*(k+1)

=4(k2+2k+1)-16(k+1)

=4k2+8k+4-16k-16

=4k2-8k-12

k2-2k-3=0 ————(Dividing by 4)

k2-3k2+k-3=0

k(k-3)+(k-3)=0

(k-3)(k+1)=0

Either (k-3)=0, then k=3

or (k+1)=0, then k=-1

k=-1,3

### Question 3. In the following, determine the set of values of k for which the given quadratic equation has real roots:

(i) 2x² + 3x + k = 0

Solution:

Here a=2, b=3, c=k

Discriminant (D)=b2-4ac

=(3)2-4*2*k

=9-8k

The roots are real

D≥0

9-8k≥0⇒9≥8k⇒8k≤9

k≤9/8

(ii) 2x² + x + k = 0

Solution:

Here a=2, b=1, c=k

Discriminant (D)=b2-4ac

=(1)2-4*2*k

=1-8k

The roots are real

D≥0

1-8k≥0⇒1≥8k

8k≤1

k≤1/8

(iii) 2x² – 5x – k = 0

Solution:

Discriminant (D)=b2-4ac

=(-5)2-4*2*(-k)

=25+8k

Roots are real

D≥0

25+8k≥0

8k≥-25⇒≥-25/8

k≥-25/8

(iv) kx² + 6x + 1 = 0

Solution:

Discriminant (D)=b2-4ac

=(6)2-4*k*1

=36-4k

Roots are real

D≥0⇒36-4k≥0

36≥4k⇒4k≤36

k≤36/4⇒k≤9

k≤9

(v) 3x² + 2x + k = 0

Solution:

Here a=3, b=2, c=k

Discriminant (D)=b2-4ac

=(2)2-4*3*k=4-12k

Roots are real

D≥0⇒4-12k≥0

4≥12k⇒12k≤0

4≥12k⇒12k≤4

k≤ ⇒k≤1/3

### Question 4. Find the values of k for which the following equations have real and equal roots :

(i) x²- 2(k + 1) x + k² = 0

Solution:

Here a=1, b=2(k+1), c=k2

Discriminant (D)=b2-4ac

=[2(k+1)]2-4*1*k2

=4(k2+2k+1)-4k2

=4k2+8k+4-k2

=8k+4

Roots are real and equal

D=0

8k+4=0⇒8k=-4

k=-4/8=-1/2, Hence k=-1/2

(ii) k²x² – 2 (2k – 1) x + 4 = 0

Solution:

Here, a=k2, b=-2(2k-1), c=4

Discriminant (D)=b2-4ac

=[-2(2k-1)]2-4*k2*4

=4(4k2-4k+1)-16k2

=16k2-16k+4-16k2=-16k+4

Roots are real and equal

D=0

-16k+4=0⇒-16k=-4

k=4/16=1/4

k=1/4

(iii) (k + 1) x² – 2(k – 1) x + 1 = 0

Solution:

Here, a=k+1, b=-2(k-1) and c=1

Discriminant (D)=b2-4ac

=[-2(k-1)]2-4(k+1)*1

=4(k2-2k+1)-4(k+1)

=4k2-8k+4-4k-4=4k2-12k

Roots are real and equal

D=0

4k2-12k=0

k2-3k=0 ————-(Dividing by 4)

Either k=0

or k-3=0, then k=3

k=0,3

(iv) x² + k(2x + k – 1) + 2 = 0

Solution:

Here, a=1, b=2k, c=(k2-k+2)

Discriminant (D)=b2-4ac

=(2k)2-4*1*(k2-k+2)

=4k2-4k2+4k-8

=4k-8

Roots are real and equal

D=0

4k-8=0⇒k=2

Hence, k=2

### Question 5. Find the values of k for which the following equations have real roots

(i) 2x² + kx + 3 = 0

Solution:

Here a = 2, b = k, c = 3

Roots are real and equal

D=0

k2-24=0⇒k2=24

k=±√24=±√4*6=±2√6

(ii) kx (x – 2) + 6 = 0

Solution:

kx2-2kx+6=0

here, a=k, b=-2k, c=6

Discriminant (D)=b2-4ac=(-2k)2-4*k*6=4k2-24k

Roots are real and equal

D=0

4k2-24k=0⇒4k(k-6)=0

k(k-6)=0

Either k=0 or

k-6=0, then k=6

k=0,6

(iii) x² – 4kx + k = 0

Solution:

Here, comparing with ax2+kx+c=0

a=1, b=-4k, c=k

Discriminant (D)=b2-4ac=(-4k)2-4*1*k=16k2-4k

Roots are real and equal

D=0

16k2-4k=0⇒4k(4k-1)=0

k(4k-1)=0

Either k=0

or 4k-1=0⇒4k=1

k=1/4, Hence k=0,1/4

(iv) kx(x – 2√5) + 10 = 0

Solution:

Here a=k, b=-2√5k, c=10

D=b2-4ac

=(-2√5k)2-4(k)(10)=20k2-40k

Roots are equal D=0

20k2-40k=0

k-2=0 ———(Dividing by 20k)

k=2

(v) kx (x – 3) + 9 = 0

Solution:

Here, a=k, b=-3k, c=9

D=b2-4ac

=(-3k)2-4(k)9

=9k2-36k

For roots to be real

D=0

9k2-36k=0

9k(k-4)=0

k-4=0⇒k=4

k=4

(vi) 4x² + kx + 3 = 0

Solution:

Here, a=4, b=k, c=3

D=b2-4ac

=k2-4(4)(3)

=k2-48

For roots to be real

D=0

k2-48=0

k2=48

k=±√48=± k=± ### Question 6. Find the values of k for which the given quadratic equation has real and distinct roots :

(i) kx² + 2x + 1 = 0

Solution:

Here, a=k, b=2, c=1

D=b2-4ac

=(2)2-4*k*1

=4-4k

Roots are real and distinct

D>0⇒4-4k>0

1-k>0⇒1>k

⇒k<1

Therefore, k<1

(ii) kx² + 6x + 1 = 0

Solution:

Here, a=k, b=6, c=1

D=b2-4ac

=(6)2-4*k*1

=36-4k

Roots are real and distinct

D>0⇒36-4k>0

9-k>0⇒9>k

⇒k<9

Therefore, k<9

### Question 7. For what value of k, (4 – k) x² + (2k + 4) x + (8k + 1) = 0, is a perfect square.

Solution:

(4 – k) x² + (2k + 4) x + (8k + 1) = 0

Here, a = 4 – k, b = 2k + 4, c = 8k + 1

=(2k+4)2-4*(4-k)(8k+1)

=4k2+16k+16-4(32k+4-8k2-k)

=4k2+16k+16-4(-8k2+31k+4)

=4k2+16k+16+32k2-124k-16

=36k2-108k

Therefore, the given quadratic equation is a perfect square

The roots are real and equal

D=0⇒36k2-108k=0

Either k=0

or k-3=0⇒k=3

k=0,3

### Question 8. Find the least positive value of k for which the equation x² + kx + 4 = 0 has real roots.

Solution:

x² + kx + 4 = 0

Here, a=1, b=k, c=4

Therefore, Discriminant(D)=b2-4ac

=(k)2=4*1*4

=k2-16

It has real roots

D≥0⇒k2-16≥0

⇒k2≥16⇒(k)2≥(±4)2

k≥4 or k≤-4

Least positive value of k=4

### Question 9. Find the value of k for which the quadratic equation (3k + 1) x² + 2(k + 1) x + 1 = 0 has equal roots. Also, find the roots.

Solution:

(3k + 1) x² + 2(k + 1) x + 1 = 0

Here a=(3k+1), b=2(k+1) ,c=1

Now, b2-4ac=[2(k+1)]2-4*(3k+1)*1

=4(k2+2k+1)-4(3k+1)

=4k2+8k+4-12k-4

=4k2-4k

Roots are real and equal

b2-4ac=0

4k2-4k=0

k2-k=0 k(k-1)=0

Either k=0 or k-1=0, then k=1

k=0,1

(i) When k=0, then

(3*0*1)x2+2(0+1)x+1=0

x2+2x+1=0

(x+1)2=0

x+1=0

x=-1

When k=1, then

(3*1+1)x2+2(1+1)x+1=0

4x2+4x2+1=0

(2x+1)2=0

2x+1=0

2x=-1⇒x=-1/2

x=1, -1/2

### Question 10. Find the values of p for which the quadratic equation (2p + 1) x² – (7p + 2) x + (7p – 3) = 0 has equal roots. Also, find these roots.

Solution:

Here, a=2-+1, b=-(7p+2), c=(7p-3)

D=0 [Equal roots]

As b2-4ac=0

[-(7p+)]2-4(2p+1)(7p-3)=0

(7p+2)2-4(14p2-6p+7p-3)=0

49p2+28p+4-56p2+24p-28p+12=0

-7p2+24p+16=0

7p2-24-16=0 ————-(Dividing both sides by -1)

7p(p-4)+4(p-4)=0

(p-4)(7p+4)=0

p-4=0 or 7p+4=0

p=4 or p=-4/7

Roots are x=-b/2a [As equal roots (given)] Where p=4, Equal roots is 5/3

When p=-4/7 Equal roots are 5/3 and 7

My Personal Notes arrow_drop_up