Open In App

Class 11 RD Sharma Solutions – Chapter 8 Transformation Formulae – Exercise 8.1

Improve
Improve
Improve
Like Article
Like
Save Article
Save
Share
Report issue
Report

Question 1. Express each of the following as the sum or difference of sines and cosines:

(i) 2 sin 3θ cos θ

Solution:

By using the trigonometric identity,

2 sin A cos B = sin (A+B) + sin (A-B)

Taking A = 3θ and B = θ

2 sin 3θ cos θ = sin (3θ+θ) + sin (3θ-θ)

= sin 4θ + sin 2θ

(ii) 2 cos 3θ sin 2θ

Solution:

By using the trigonometric identity,

2 sin A cos B = sin (A+B) + sin (A-B)

Taking A = 2θ and B = 3θ

2 cos 3θ sin 2θ = sin (3θ+2θ) + sin (2θ-3θ)

= sin 5θ + sin (-θ)

= sin 5θ – sin θ

(iii) 2 sin 4θ sin 3θ

Solution:

By using the trigonometric identity,

2 sin A sin B = cos (A-B) – cos (A+B)

Taking A = 4θ and B = 3θ

2 sin 4θ sin 3θ = cos (4θ-3θ) – cos (4θ+3θ)

= cos θ – cos 7θ

(iv) 2 cos 7θ cos 3θ

Solution:

By using the trigonometric identity,

2 cos A cos B = cos (A+B) + cos (A-B)

Taking A = 7θ and B = 3θ

2 cos 7θ cos 3θ = cos (7θ+3θ) + cos (7θ-3θ)

= cos 10θ – cos 4θ

Question 2. Prove that:

(i) 2 \hspace{0.1cm}sin \frac{5\pi}{12}\hspace{0.1cm} sin \frac{\pi}{12} = \frac{1}{2}

Solution:

By using the trigonometric identity,

2 sin A sin B = cos (A-B) – cos (A+B)

Taking A = \frac{5\pi}{12}  and B = \frac{\pi}{12}

2 \hspace{0.1cm}sin \frac{5\pi}{12}\hspace{0.1cm} sin \frac{\pi}{12} = cos (\frac{5\pi}{12}-\frac{\pi}{12}) - cos (\frac{5\pi}{12}+\frac{\pi}{12})\\ = cos (\frac{4\pi}{12}) - cos (\frac{6\pi}{12})\\ = cos (\frac{\pi}{3}) - cos (\frac{\pi}{2})\\ = \frac{1}{2} - 0\\ = \frac{1}{2}

Hence, LHS = RHS

(ii) 2\hspace{0.1cm} cos \frac{5\pi}{12} \hspace{0.1cm}cos \frac{\pi}{12} = \frac{1}{2}

Solution:

By using the trigonometric identity,

2 cos A cos B = cos (A+B) + cos (A-B)

Taking A = \frac{5\pi}{12}  and B = \frac{\pi}{12}

2\hspace{0.1cm} cos \frac{5\pi}{12} \hspace{0.1cm}cos \frac{\pi}{12} = cos (\frac{5\pi}{12}+\frac{\pi}{12}) + cos (\frac{5\pi}{12}-\frac{\pi}{12})

= cos (\frac{6\pi}{12}) + cos (\frac{4\pi}{12})\\ = cos (\frac{\pi}{2}) + cos (\frac{\pi}{3})\\ = 0 + \frac{1}{2}\\ = \frac{1}{2}

Hence, LHS = RHS

(iii) 2 \hspace{0.1cm}sin \frac{5\pi}{12}\hspace{0.1cm} cos \frac{\pi}{12} = \frac{(\sqrt{3} + 2)}{2}

Solution:

By using the trigonometric identity,

2 sin A cos B = sin (A+B) + sin (A-B)

Taking A = \frac{5\pi}{12}  and B = \frac{\pi}{12}

2 \hspace{0.1cm}sin \frac{5\pi}{12}\hspace{0.1cm} cos \frac{\pi}{12} = sin (\frac{5\pi}{12}+\frac{\pi}{12}) + sin (\frac{5\pi}{12}-\frac{\pi}{12})

= sin (\frac{6\pi}{12}) + sin (\frac{4\pi}{12})

= sin (\frac{\pi}{2})  + sin (\frac{\pi}{3})

= 1 + \frac{\sqrt{3}}{2}

\frac{\sqrt{3}+2}{2}

Hence, LHS = RHS

Question 3. Show that:

(i) sin 50° cos 85° = \frac{(1 - \sqrt{2}sin 35\degree)}{2\sqrt{2}}

Solution:

By using the trigonometric identity,

2 sin A cos B = sin (A+B) + sin (A-B)

sin A cos B = \frac{1}{2} (sin (A+B) + sin (A-B))

Taking A = 50° and B = 85°

sin 50° cos 85° = \frac{1}{2} (sin (50°+85°) + sin (50°-85°))

\frac{1}{2} (sin (135°) + sin (-35°))

\frac{1}{2} (sin (180°-45°) – sin (35°))     (sin(-θ)=-sin θ)

\frac{1}{2} (sin (45°) – sin (35°))     (sin(Ï€-θ)=sin θ)

= \frac{1}{2}(\frac{1}{\sqrt{2}} - sin (35\degree))\\ = \frac{1}{2}(\frac{(1 - \sqrt{2}sin 35\degree)}{\sqrt{2}})\\ = \frac{(1 - \sqrt{2}sin 35\degree)}{2\sqrt{2}}

Hence, LHS = RHS

(ii) sin 25° cos 115° = \frac{1}{2}(sin 40 \degree - 1)

Solution:

By using the trigonometric identity,

2 sin A cos B = sin (A+B) + sin (A-B)

sin A cos B = \frac{1}{2} (sin (A+B) + sin (A-B))

Taking A = 25° and B = 115°

sin 25° cos 115° = \frac{1}{2} (sin (25°+85°) + sin (25°-115°))

\frac{1}{2} (sin (140°) + sin (-90°))

\frac{1}{2} (sin (180-40°) – sin (90°))     (sin(-θ)=-sin θ)

\frac{1}{2} (sin (40°) – sin (90°))     (sin(Ï€-θ)=sin θ)

\frac{1}{2} (sin (40°) – 1)

Hence, LHS = RHS

Question 4. Prove that : 4 \hspace{0.1cm}cos \hspace{0.1cm}\theta \hspace{0.1cm}cos\hspace{0.1cm} (\frac{\pi}{3} + \theta) \hspace{0.1cm}cos\hspace{0.1cm} (\frac{\pi}{3} - \theta) = cos 3\theta

Solution:

4 \hspace{0.1cm}cos \hspace{0.1cm}\theta \hspace{0.1cm}cos\hspace{0.1cm} (\frac{\pi}{3} + \theta) \hspace{0.1cm}cos\hspace{0.1cm} (\frac{\pi}{3} - \theta) = 2 \hspace{0.1cm}cos \hspace{0.1cm}\theta(2 \hspace{0.1cm}cos\hspace{0.1cm} (\frac{\pi}{3} + \theta) \hspace{0.1cm}cos\hspace{0.1cm} (\frac{\pi}{3} - \theta))

By using the trigonometric identity,

2 cos A cos B = cos (A+B) + cos (A-B)

Taking A = \frac{\pi}{3} +θ and B = \frac{\pi}{3} -θ

= 2 \hspace{0.1cm}cos \hspace{0.1cm}\theta(cos\hspace{0.1cm} (\frac{\pi}{3} + \theta+\frac{\pi}{3} - \theta) +cos\hspace{0.1cm} (\frac{\pi}{3} + \theta)-(\frac{\pi}{3} - \theta))\\ = 2 \hspace{0.1cm}cos \hspace{0.1cm}\theta(cos\hspace{0.1cm} (\frac{2\pi}{3}) +cos\hspace{0.1cm} (2\theta))\\ = 2 \hspace{0.1cm}cos \hspace{0.1cm}\theta(cos\hspace{0.1cm} (\pi+\frac{\pi}{3}) +cos\hspace{0.1cm} (2\theta))\\ = 2 \hspace{0.1cm}cos \hspace{0.1cm}\theta(- cos\hspace{0.1cm} (\frac{\pi}{3}) +cos\hspace{0.1cm} (2\theta))\\ = 2 \hspace{0.1cm}cos \hspace{0.1cm}\theta(- \frac{1}{2} +cos\hspace{0.1cm} (2\theta))\\ = - cos \hspace{0.1cm}\theta + [2 \hspace{0.1cm}cos \hspace{0.1cm}\theta\hspace{0.1cm} cos\hspace{0.1cm} (2\theta))]

Using the identity again, we have

Taking A = 2θ and B = θ

= - cos \hspace{0.1cm}\theta + [cos\hspace{0.1cm} (2\theta + \theta) +cos\hspace{0.1cm} (2\theta - \theta)]\\ = - cos \hspace{0.1cm}\theta + cos\hspace{0.1cm} (3\theta) +cos\hspace{0.1cm} (\theta)\\ = cos\hspace{0.1cm} (3\theta)

Hence, LHS = RHS

Question 5. Prove that :

(i) cos 10° cos 30° cos 50° cos 70° = \frac{3}{16}

Solution:

cos 10° cos 30° cos 50° cos 70° = cos 30° cos 10° cos 50° cos 70°

\frac{\sqrt{3}}{2}  (cos 10° cos 50°) cos 70°

By using the trigonometric identity,

2 cos A cos B = cos (A+B) + cos (A-B)

cos A cos B = \frac{1}{2} [cos (A+B) + cos (A-B)]

Taking A = 10° and B = 50°

\frac{\sqrt{3}}{2}  (\frac{1}{2} [cos (10°+50°) + cos (10°-50°)]) cos 70°

\frac{\sqrt{3}}{4}  (cos (60°) + cos (-40°)) cos 70°

\frac{\sqrt{3}}{4}  (\frac{1}{2}  + cos (40°)) cos 70°

\frac{\sqrt{3}}{8}  cos 70° + \frac{\sqrt{3}}{4}  (cos 70° cos (40°))

Again using the identity, we get

\frac{\sqrt{3}}{8}  cos 70° + \frac{\sqrt{3}}{4}  (\frac{1}{2} [cos (70°+40°) + cos (70°-40°)])

\frac{\sqrt{3}}{8}  cos 70° + \frac{\sqrt{3}}{8}  [cos (110°) + cos (30°)]

\frac{\sqrt{3}}{8}  cos 70° + \frac{\sqrt{3}}{8}  [cos (110°) + \frac{\sqrt{3}}{2} ]

\frac{\sqrt{3}}{8}  cos 70° + \frac{\sqrt{3}}{8}  cos (110°) + \frac{3}{16}

\frac{\sqrt{3}}{8}  (cos 70° + cos (110°)) + \frac{3}{16}

\frac{\sqrt{3}}{8}  (cos 70° + cos (180°-70°)) + \frac{3}{16}

\frac{\sqrt{3}}{8}  (cos 70° – cos (70°)) + \frac{3}{16}

\frac{3}{16}

Hence, LHS = RHS

(ii) cos 40° cos 80° cos 160° = -\frac{1}{8}

Solution:

cos 40° cos 80° cos 160° = cos 80° (cos 40° cos 160°)

By using the trigonometric identity,

2 cos A cos B = cos (A+B) + cos (A-B)

cos A cos B = \frac{1}{2} [cos (A+B) + cos (A-B)]

Taking A = 160° and B = 40°

= cos 80° (\frac{1}{2} [cos (160°+40°) + cos (160°-40°)])

= cos 80° (\frac{1}{2} [cos (200°) + cos (120°)])

= cos 80° (\frac{1}{2} [cos (180°+20°) + cos (180°-60°)])

= cos 80° (\frac{1}{2} [- cos (20°) + (-cos (60°))])

= cos 80° (\frac{1}{2} [- cos (20°) – cos (60°)])

= cos 80° (\frac{1}{2} [- cos (20°) – \frac{1}{2} ])

-\frac{1}{2}  (cos 80° cos (20°) + \frac{1}{2}  cos 80°])

Again using the identity, we get

= -\frac{1}{2} ((\frac{1}{2}[cos (80\degree+20\degree) + cos (80\degree-20\degree)]) + \frac{1}{2} cos 80\degree)\\ = -\frac{1}{4} ((cos (100\degree) + cos (60\degree)) + cos 80\degree)\\ = -\frac{1}{4} (cos (180\degree-80\degree) + cos (60\degree) + cos 80\degree)\\ = -\frac{1}{4} (- cos (80\degree) + cos (60\degree) + cos 80\degree)\\ = -\frac{1}{4} (cos (60\degree))\\ = -\frac{1}{4} (\frac{1}{2})\\ = -\frac{1}{8}

Hence, LHS = RHS

(iii) sin 20° sin 40° sin 80° = \frac{\sqrt{3}}{8}

Solution:

sin 20° sin 40° sin 80° = (sin 20° sin 40°) sin 80°

By using the trigonometric identity,

2 sin A sin B = cos (A-B) – cos (A+B)

sin A sin B = \frac{1}{2} [cos (A-B) – cos (A+B)]

Taking A = 40° and B = 20°

= (\frac{1}{2} [cos (40°-20°) – cos (40°+20°)]) sin 80°

\frac{1}{2}  sin 80° [cos (20°) – cos (60°)]

\frac{1}{2}  sin 80° [cos (20°) – \frac{1}{2} ]

\frac{1}{2}  [sin 80° cos (20°) – \frac{1}{2}  sin 80°]

By using the trigonometric identity,

2 sin A cos B = sin (A+B) + sin (A-B)

sin A cos B = \frac{1}{2} [sin (A+B) + sin (A-B)]

Taking A = 80° and B = 20°

= \frac{1}{2} [(\frac{1}{2}[sin (80\degree+20\degree) + sin (80\degree-20\degree)]) - \frac{1}{2} sin 80\degree]\\ = \frac{1}{4} [(sin (80\degree+20\degree) + sin (80\degree-20\degree)) - sin 80\degree]\\ = \frac{1}{4} [sin (100\degree) + sin (60\degree) - sin 80\degree]\\ = \frac{1}{4} [sin (180\degree-80\degree) + \frac{\sqrt{3}}{2} - sin 80\degree]\\ = \frac{1}{4} [sin (80\degree) + \frac{\sqrt{3}}{2} - sin 80\degree]\\ = \frac{1}{4} [\frac{\sqrt{3}}{2}]\\ = \frac{\sqrt{3}}{8}

Hence, LHS = RHS

(iv) cos 20° cos 40° cos 80° = \frac{1}{8}

Solution:

cos 20° cos 40° cos 80° = cos 40° (cos 20° cos 80°)

By using the trigonometric identity,

2 cos A cos B = cos (A+B) + cos (A-B)

cos A cos B = \frac{1}{2} [cos (A+B) + cos (A-B)]

Taking A = 80° and B = 20°

= cos 40\degree (\frac{1}{2}[cos (80\degree+20\degree) + cos (80\degree-20\degree)])\\ = \frac{1}{2} cos 40\degree [cos (100\degree) + cos (60\degree)]\\ = \frac{1}{2} cos 40\degree[cos (180\degree-80\degree) + cos (60\degree)]\\ = \frac{1}{2} cos 40\degree [- cos (80\degree) + \frac{1}{2}]\\ = \frac{1}{2} cos 40\degree [\frac{1}{2}- cos (80\degree)]\\ = \frac{1}{2} [\frac{1}{2} cos 40\degree - cos (80\degree) cos 40\degree]\\

Again using the identity, we get

= \frac{1}{2} [\frac{1}{2} cos 40\degree - \frac{1}{2}(cos (80\degree+40\degree) + cos (80\degree-40\degree))]\\ = \frac{1}{2} [\frac{1}{2} cos 40\degree - \frac{1}{2}(cos (120\degree) + cos (40\degree))]\\ = \frac{1}{2} [\frac{1}{2} cos 40\degree - \frac{1}{2}(cos (180\degree-60\degree) + cos (40\degree))]\\ = \frac{1}{2} [\frac{1}{2} cos 40\degree - \frac{1}{2}(- cos (60\degree) + cos (40\degree))]\\ = \frac{1}{2} [\frac{1}{2} cos 40\degree + \frac{1}{2} cos (60\degree) - \frac{1}{2} cos (40\degree)]\\ = \frac{1}{2} [\frac{1}{2} \frac{1}{2}]\\ = \frac{1}{8}

Hence, LHS = RHS

(v) tan 20° tan 40° tan 60° tan 80° = 3

Solution:

tan 20° tan 40° tan 60° tan 80° = tan 60° \frac{sin 20\degree sin 40\degree sin 80\degree}{cos 20\degree cos 40\degree cos 80\degree}

\sqrt{3} \frac{sin 20\degree sin 40\degree sin 80\degree}{cos 20\degree cos 40\degree cos 80\degree}

\sqrt{3} \frac{(sin 20\degree sin 40\degree) sin 80\degree}{(cos 20\degree cos 40\degree) cos 80\degree}

By using the trigonometric identity,

2 cos A cos B = cos (A+B) + cos (A-B)

cos A cos B = \frac{1}{2} [cos (A+B) + cos (A-B)]

and, 2 sin A sin B = cos (A-B) – cos (A+B)

sin A sin B = \frac{1}{2} [cos (A-B) – cos (A+B)]

Taking A = 40° and B = 20°

= \sqrt{3} (\frac{(\frac{1}{2}[cos ( 40\degree- 20\degree) - cos ( 40\degree+ 20\degree)]) sin 80\degree}{(\frac{1}{2}[cos ( 40\degree+ 20\degree) + cos ( 40\degree- 20\degree)]) cos 80\degree})\\ = \sqrt{3} (\frac{[cos ( 20\degree) - cos (60\degree)] sin 80\degree}{([cos ( 60\degree) + cos (20\degree)) cos 80\degree})\\ = \sqrt{3} (\frac{[cos ( 20\degree) - \frac{1}{2}] sin 80\degree}{(\frac{1}{2} + cos (20\degree)) cos 80\degree})\\ = \sqrt{3} (\frac{(cos ( 20\degree) sin 80\degree - \frac{1}{2} sin 80\degree)}{\frac{1}{2} cos 80\degree + cos (20\degree) cos 80\degree})\\

Again using the identity, we get

2 sin A cos B = sin (A+B) + sin (A-B)

sin A cos B = \frac{1}{2} [sin (A+B) + sin (A-B)]

Taking A = 80° and B = 20°

= \sqrt{3} (\frac{(\frac{1}{2}[sin (80\degree+20\degree) + sin (80\degree-20\degree)] - \frac{1}{2} sin 80\degree)}{\frac{1}{2} cos 80\degree + \frac{1}{2}[cos (80\degree+20\degree) + cos (80\degree-20\degree)]})\\ = \sqrt{3} (\frac{(\frac{1}{2}[sin (100\degree) + sin (60\degree)] - \frac{1}{2} sin 80\degree)}{\frac{1}{2} cos 80\degree + \frac{1}{2}[cos (100\degree) + cos (60\degree)]})\\ = \sqrt{3} (\frac{(\frac{1}{2}[sin (180\degree-80\degree) + sin (60\degree)] - \frac{1}{2} sin 80\degree)}{\frac{1}{2} cos 80\degree + \frac{1}{2}[cos (180\degree-80\degree) + cos (60\degree)]})\\ = \sqrt{3} (\frac{(\frac{1}{2} sin (80\degree) + \frac{1}{2} sin (60\degree) - \frac{1}{2} sin 80\degree)}{\frac{1}{2} (- cos 80\degree) + \frac{1}{2} cos (80\degree) + \frac{1}{2} cos (60\degree)})\\ = \sqrt{3} (\frac{(\frac{1}{2} sin (60\degree)}{\frac{1}{2} cos (60\degree)})\\ = \sqrt{3} (tan (60\degree))\\ = \sqrt{3} (\sqrt{3})\\ = 3

Hence, LHS = RHS

(vi) tan 20° tan 30° tan 40° tan 80° = 1

Solution:

tan 20° tan 30° tan 40° tan 80° = tan 30° \frac{sin 20\degree sin 40\degree sin 80\degree}{cos 20\degree cos 40\degree cos 80\degree}

\frac{1}{\sqrt{3}} \frac{sin 20\degree sin 40\degree sin 80\degree}{cos 20\degree cos 40\degree cos 80\degree}

\frac{1}{\sqrt{3}}\frac{(sin 20\degree sin 40\degree) sin 80\degree}{(cos 20\degree cos 40\degree) cos 80\degree}

By using the trigonometric identity,

2 cos A cos B = cos (A+B) + cos (A-B)

cos A cos B = \frac{1}{2} [cos (A+B) + cos (A-B)]

and, 2 sin A sin B = cos (A-B) – cos (A+B)

sin A sin B = \frac{1}{2} [cos (A-B) – cos (A+B)]

Taking A = 40° and B = 20°

= \frac{1}{\sqrt{3}}\frac{(\frac{1}{2}[cos ( 40\degree- 20\degree) - cos ( 40\degree+ 20\degree)]) sin 80\degree}{(\frac{1}{2}[cos ( 40\degree+ 20\degree) + cos ( 40\degree- 20\degree)]) cos 80\degree}\\ = \frac{1}{\sqrt{3}}\frac{[cos ( 20\degree) - cos (60\degree)] sin 80\degree}{([cos ( 60\degree) + cos (20\degree)) cos 80\degree}\\ = \frac{1}{\sqrt{3}} \frac{[cos ( 20\degree) - \frac{1}{2}] sin 80\degree}{(\frac{1}{2}+ cos (20\degree)) cos 80\degree}\\ = \frac{1}{\sqrt{3}} \frac{(cos ( 20\degree) sin 80\degree - \frac{1}{2}sin 80\degree)}{\frac{1}{2} cos 80\degree + cos (20\degree) cos 80\degree}

Again using the identity, we get

2 sin A cos B = sin (A+B) + sin (A-B)

sin A cos B = \frac{1}{2}[sin (A+B) + sin (A-B)]

Taking A = 80° and B = 20°

= \frac{1}{\sqrt{3}} (\frac{1}{2}[sin (80\degree+20\degree) + sin (80\degree-20\degree)] - \frac{1}{2} sin 80\degree){\frac{1}{2} cos 80\degree + \frac{1}{2}[cos (80\degree+20\degree) + cos (80\degree-20\degree)]}\\ = \frac{1}{\sqrt{3}} (\frac{1}{2}[sin (100\degree) + sin (60\degree)] - \frac{1}{2} sin 80\degree){\frac{1}{2} cos 80\degree + \frac{1}{2}[cos (100\degree) + cos (60\degree)]}\\ = \frac{1}{\sqrt{3}} (\frac{1}{2}[sin (180\degree-80\degree) + sin (60\degree)] - \frac{1}{2} sin 80\degree){\frac{1}{2} cos 80\degree + \frac{1}{2}[cos (180\degree-80\degree) + cos (60\degree)]}\\ = \frac{1}{\sqrt{3}} (\frac{1}{2} sin (80\degree) + \frac{1}{2} sin (60\degree) - \frac{1}{2} sin 80\degree){\frac{1}{2} (- cos 80\degree) + \frac{1}{2} cos (80\degree) + \frac{1}{2} cos (60\degree)}\\ = \frac{1}{\sqrt{3}} (\frac{1}{2} sin (60\degree){\frac{1}{2} cos (60\degree)}\\ = \frac{1}{\sqrt{3}} (tan (60\degree))\\ = \frac{1}{\sqrt{3}} (\sqrt{3})\\ = 1

Hence, LHS = RHS

(vii) sin 10° sin 50° sin 60° sin 70° = \frac{\sqrt{3}}{16}

Solution:

sin 10° sin 50° sin 60° sin 70° = sin 60° (sin 10° sin 50° sin 70°)

= \frac{\sqrt{3}}{2} (sin (90-80°) sin (90-40°) sin (90-20°))

\frac{\sqrt{3}}{2}  (cos (80°) cos (40°) cos (20°))

\frac{\sqrt{3}}{2}  cos 40° (cos 80° cos 20°)

By using the trigonometric identity,

2 cos A cos B = cos (A+B) + cos (A-B)

cos A cos B = \frac{1}{2} [cos (A+B) + cos (A-B)]

Taking A = 80° and B = 20°

= \frac{\sqrt{3}}{2} cos 40\degree (\frac{1}{2}[cos (80\degree+20\degree) + cos (80\degree-20\degree)])\\ = \frac{\sqrt{3}}{2} \frac{1}{2} cos 40\degree [cos (100\degree) + cos (60°)]\\ = \frac{\sqrt{3}}{4} cos 40\degree[cos (180\degree-80\degree) + cos (60\degree)]\\ = \frac{\sqrt{3}}{4} cos 40\degree [- cos (80\degree) + \frac{1}{2}]\\ = \frac{\sqrt{3}}{4} cos 40\degree [\frac{1}{2}- cos (80\degree)]\\ = \frac{\sqrt{3}}{4} [\frac{1}{2} cos 40\degree - cos (80\degree) cos 40\degree]

Again using the identity, we get

= \frac{\sqrt{3}}{4} [\frac{1}{2} cos 40\degree - \frac{1}{2}(cos (80\degree+40\degree) + cos (80\degree-40\degree))]\\ = \frac{\sqrt{3}}{4} [\frac{1}{2} cos 40\degree - \frac{1}{2}(cos (120\degree) + cos (40\degree))]\\ = \frac{\sqrt{3}}{4} [\frac{1}{2} cos 40\degree - \frac{1}{2}(cos (180\degree-60\degree) + cos (40\degree))]\\ = \frac{\sqrt{3}}{4} [\frac{1}{2} cos 40\degree - \frac{1}{2}(- cos (60\degree) + cos (40\degree))]\\ = \frac{\sqrt{3}}{4} [\frac{1}{2} cos 40\degree + \frac{1}{2} cos (60\degree) - \frac{1}{2} cos (40\degree)]\\ = \frac{\sqrt{3}}{4} [\frac{1}{2} \frac{1}{2}]\\ = \frac{\sqrt{3}}{16}

Hence, LHS = RHS

(viii) sin 20° sin 40° sin 60° sin 80° = \frac{3}{16}

Solution:

sin 20° sin 40° sin 60° sin 80° = sin 60° (sin 20° sin 40° sin 80°)

\frac{\sqrt{3}}{2}  (sin 20° sin 40°) sin 80°

By using the trigonometric identity,

2 sin A sin B = cos (A-B) – cos (A+B)

sin A sin B = \frac{1}{2} [cos (A-B) – cos (A+B)]

Taking A = 40° and B = 20°

= \frac{\sqrt{3}}{2} (\frac{1}{2}[cos (40\degree-20\degree) - cos (40\degree+20\degree)]) sin 80\degree\\ = \frac{\sqrt{3}}{2} \frac{1}{2} sin 80\degree [cos (20\degree) - cos (60\degree)]\\ = \frac{\sqrt{3}}{4} sin 80\degree [cos (20\degree) - \frac{1}{2}]\\ = \frac{\sqrt{3}}{4} [sin 80\degree cos (20\degree) - \frac{1}{2} sin 80\degree]\\

By using the trigonometric identity,

2 sin A cos B = sin (A+B) + sin (A-B)

sin A cos B = \frac{1}{2} [sin (A+B) + sin (A-B)]

Taking A = 80° and B = 20°

= \frac{\sqrt{3}}{4} [(\frac{1}{2}[sin (80\degree+20\degree) + sin (80\degree-20\degree)]) - \frac{1}{2} sin 80\degree]\\ = \frac{\sqrt{3}}{8} [(sin (80\degree+20\degree) + sin (80\degree-20\degree)) - sin 80\degree]\\ = \frac{\sqrt{3}}{8} [sin (100\degree) + sin (60\degree) - sin 80\degree]\\ = \frac{\sqrt{3}}{8} [sin (180\degree-80\degree) + \frac{\sqrt{3}}{2} - sin 80\degree]\\ = \frac{\sqrt{3}}{8} [sin (80\degree) + \frac{\sqrt{3}}{2} - sin 80\degree]\\ = \frac{\sqrt{3}}{8} [\frac{\sqrt{3}}{2}]\\ = \frac{3}{16}

Hence, LHS = RHS

Question 6. Show that

(i) sin A sin (B-C) + sin B sin (C-A) + sin C sin (A-B) = 0

Solution:

By using the trigonometric identity,

2 sin θ sin Φ = cos (θ-Φ) – cos (θ+Φ)

sin θ sin Φ = \frac{1}{2} [cos (θ-Φ) – cos (θ+Φ)]

sin A sin (B-C) + sin B sin (C-A) + sin C sin (A-B) = (\frac{1}{2} [cos (A-(B-C)) – cos (A+(B-C))]) + (\frac{1}{2} [cos (B-(C-A)) – cos (B+(C-A))]) + (\frac{1}{2} [cos (C-(A-B)) – cos (C+(A-B))])

\frac{1}{2} (cos (A-B+C)) – cos (A+B-C) + cos (B-C+A) – cos (B+C-A) + cos (C-A+B) – cos (C+A-B))

\frac{1}{2} (cos (A-B+C)) – cos (C+A-B) – cos (A+B-C) + cos (B-C+A) – cos (B+C-A) + cos (C-A+B))

\frac{1}{2}(0)

 = 0

Hence, LHS = RHS

(ii) sin (B-C) cos (A-D) + sin (C-A) cos (B-D) + sin (A-B) cos (C-D) = 0

Solution:

By using the trigonometric identity,

2 sin θ cos Φ = sin (θ+Φ) + sin (θ-Φ)

sin θ cos Φ\frac{1}{2} [sin (θ+Φ) + sin (θ-Φ)]

sin (B-C) cos (A-D) + sin (C-A) cos (B-D) + sin (A-B) cos (C-D) = (\frac{1}{2} [sin (B-C+(A-D)) + sin (B-C-(A-D))]) + (\frac{1}{2} [sin (C-A+(B-D)) + sin (C-A-(B-D))]) +(\frac{1}{2} [sin (A-B+(C-D)) + sin (A-B-(C-D))])

= (\frac{1}{2} [sin (A+B-C-D) + sin (-A+B-C+D)]) + (\frac{1}{2} [sin (-A+B+C-D) + sin (-A-B+C+D)]) +(\frac{1}{2} [sin (A-B+C-D) + sin (A-B-C+-D)])

\frac{1}{2} (sin (A+B-C-D) + sin (-(A-B+C-D)) + sin (-(A-B-C+D)) + sin (-(A+B-C-D)) +sin (A-B+C-D) + sin (A-B-C+-D))

= \frac{1}{2} (sin (A+B-C-D) – sin(A-B+C-D) – sin (A-B-C+D) – sin (A+B-C-D) +sin (A-B+C-D) + sin (A-B-C+-D))

\frac{1}{2}(0)

= 0

Hence, LHS = RHS

Question 7. Prove that : tan θ tan (60°-θ) tan (60°+θ) = tan 3θ

Solution:

tan θ tan (60°-θ) tan (60°+θ) = tan θ (tan (60°-θ)) (tan (60°+θ))

By using the trigonometric identity,

tan (a+b) = \frac{tan\hspace{0.1cm} a + tan\hspace{0.1cm} b}{1 - tan\hspace{0.1cm} a \hspace{0.1cm}tan\hspace{0.1cm} b}

tan (a+b) = \frac{tan\hspace{0.1cm} a - tan\hspace{0.1cm} b}{1 + tan\hspace{0.1cm} a \hspace{0.1cm}tan\hspace{0.1cm} b}

= tan\hspace{0.1cm} θ (\frac{tan 60\degree - tan θ}{1 + tan 60\degree tan θ}) ( \frac{tan 60\degree + tan θ}{1 - tan 60\degree tan θ})\\ = tan\hspace{0.1cm} θ (\frac{(tan 60\degree)^2 - (tan θ)^2}{1^2 - (tan 60\degree° tan θ)^2})\hspace{0.1cm}\hspace{0.1cm}\hspace{0.1cm}((a+b)(a-b)=a^2-b^2)\\ = tan\hspace{0.1cm} θ (\frac{(tan 60\degree)^2 - tan^2 θ}{1 - (tan 60\degree)^2 tan^2 θ})\\ = tan \hspace{0.1cm}θ (\frac{(\sqrt{3})^2 - tan^2 θ}{1 - (\sqrt{3})^2 tan^2 θ})\\ = tan\hspace{0.1cm} θ (\frac{3 - tan^2 θ}{1 - 3 tan^2 θ})\\ = \frac{3 \hspace{0.1cm}tan\hspace{0.1cm} \theta  - tan^3 \theta}{1 - 3 \hspace{0.1cm}tan^2 \theta}

= tan 3θ

Hence, LHS = RHS

Question 8. If α + β = 90°, show that the maximum value of cos(α) cos(β) is \frac{1}{2}.

Solution:

cos(α) cos(β) = y

By using the trigonometric identity,

2 cos A cos B = cos (A+B) + cos (A-B)

cos A cos B = \frac{1}{2} [cos (A+B) + cos (A-B)]

Taking A = α and B = β

cos(α) cos(β) = \frac{1}{2} [cos (α+β) + cos (α-β)]

As, α + β = 90°

y = \frac{1}{2} [cos (90°) + cos (α-β)]

y = \frac{1}{2} [0 + cos (α-β)]

y = \frac{1}{2} (cos (α-β))

AS, we know that range of cos function is [-1,1]

-1\leq (cos (\alpha-\beta)) \leq 1

\frac{-1}{2} \leq \frac{1}{2}(cos (\alpha-\beta)) \leq \frac{1}{2}

\frac{-1}{2} \leq y \leq \frac{1}{2}

Hence, the maximum value of cos(α) cos(β) is \frac{1}{2}.



Last Updated : 30 Apr, 2021
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads