# Class 11 RD Sharma Solutions – Chapter 10 Sine and Cosine Formulae and Their Applications – Exercise 10.2 | Set 1

Last Updated : 30 Apr, 2021

### Question 1. In a âˆ†ABC, if a = 5, b = 6 and C = 60o, show that its area is (15âˆš3)/2 sq. units.

Solution:

We are given a = 5, b = 6 and C = 60o

Now we know the area of a âˆ†ABC is given by 1/2 ab sin C where, a and b are the lengths of the sides of a triangle and C is the angle between these sides.

So, area of âˆ†ABC = (1/2) 5(6) sin 60o

= (1/2) (5) (6) (âˆš3/2)

= 15âˆš3/2 sq. units

Hence, proved.

### Question 2. In a âˆ†ABC, if a = âˆš2, b = âˆš3 and c = âˆš5 show that its area is âˆš6/2 sq. units.

Solution:

We are given a = âˆš2, b = âˆš3 and c = âˆš5.

According to Cosine formula, cos C = (a2 + b2 â€“ c2)/2ab

= (2 + 3 â€“ 5)/2âˆš6

= 0

So, sin C = âˆš(1â€“cos2 C) = 1

Now we know the area of a âˆ†ABC is given by 1/2 ab sin C where, a and b are the lengths of the sides of a triangle and C is the angle between these sides.

Therefore, area of âˆ†ABC = (1/2) (âˆš2) (âˆš3) (1)

= âˆš6/2 sq. units.

Hence, proved.

### Question 3. The sides of a triangle are a = 4, b = 6 and c = 8, show that:

8 cos A + 16 cos B + 4 cos C = 17

Solution:

We are given a = 4, b = 6 and c = 8.

According to Cosine formula, cos A = (b2 + c2 â€“ a2)/2bc

= (36 + 64 â€“ 16)/96

= 84/96

= 7/8

Also, cos B = (a2 + c2 â€“ b2)/2ac

= (16 + 64 â€“ 36)/64

= 44/64

= 11/16

Also, cos C = (a2 + b2 â€“ c2)/2ab

= (16 + 36 â€“ 64)/48

= â€“12/48

= â€“1/4

Here, L.H.S. = 8 cos A + 16 cos B + 4 cos C

= 8 Ã— (7/8) + 16 Ã— (11/16) + 4 Ã— (â€“1/4)

= 7 + 11 â€“ 1

= 17

= R.H.S.

Hence, proved.

### Question 4. In a âˆ†ABC, if a = 18, b = 24, c = 30, find cos A, cos B and cos C.

Solution:

We are given a = 18, b = 24 and c = 30.

According to Cosine formula, cos A = (b2 + c2 â€“ a2)/2bc

= (242 + 302 â€“ 182)/2(24)(30)

= (576 + 900 â€“ 324)/1440

= 1152/1440

= 4/5

Also, cos B = (a2 + c2 â€“ b2)/2ac

= (324 + 900 â€“ 576)/2(18)(30)

= 648/1080

= 3/5

Also, cos C = (a2 + b2 â€“ c2)/2ab

= (324 + 576 â€“ 900)/2(18)(24)

= 0

Therefore, the values of cos A, cos B and cos C are 4/5, 3/5 and 0 respectively.

### Question 5. For any Î”ABC, show that b (c cos A â€“ a cos C) = c2 â€“ a2

Solution:

According to Cosine formula,

cos A = (b2 + c2 â€“ a2)/2bc

=> bc cos A = (b2 + c2 â€“ a2)/2 . . . . (1)

Also, cos C = (a2 + b2 â€“ c2)/2ab

=> ab cos C = (a2 + b2 â€“ c2)/2 . . . . (2)

Subtracting (2) from (1), we get,

L.H.S. = bc cos A â€“ ab cos C = (b2 + c2 â€“ a2)/2 â€“ (a2 + b2 â€“ c2)/2

= (b2 + c2 â€“ a2 â€“ a2 â€“ b2 + c2)/2

= (2c2 â€“ 2a2)/2

= c2 â€“ a2

= R.H.S.

Hence, proved.

### Question 6. For any Î”ABC show that c (a cos B â€“ b cos A) = a2 â€“ b2

Solution:

According to Cosine formula,

cos B = (a2 + c2 â€“ b2)/2ac

=> ac cos B = (a2 + c2 â€“ b2)/2  . . . . (1)

Also cos A = (b2 + c2 â€“ a2)/2bc

=> bc cos A = (b2 + c2 â€“ a2)/2  . . . . (2)

Subtracting (2) from (1), we get,

L.H.S. = ac cos B â€“ bc cos A = (a2 + c2 â€“ b2)/2 â€“ (b2 + c2 â€“ a2)/2

= (a2 + c2 â€“ b2 â€“ b2 â€“ c2 + a2)/2

= (2a2 â€“ 2b2)/2

= a2 â€“ b2

= R.H.S.

Hence, proved.

### Question 7. For any Î”ABC show that 2 (bc cos A + ca cos B + ab cos C) = a2 + b2 + c2

Solution:

According to Cosine formula,

cos A = (b2 + c2 â€“ a2)/2bc

=> 2bc cos A = b2 + c2 â€“ a2  . . . . (1)

Also, cos B = (a2 + c2 â€“ b2)/2ac

=> 2ac cos B = a2 + c2 â€“ b2 . . . . (2)

Also, cos C = (a2 + b2 â€“ c2)/2ab

=> 2ab cos C = a2 + b2 â€“ c2 . . . . (3)

Adding (1), (2) and (3), we get,

L.H.S. = 2bc cos A + 2ac cos B + 2ab cos C

= b2 + c2 â€“ a2 + a2 + c2 â€“ b2 + a2 + b2 â€“ c2

= a2 + b2 + c2

= R.H.S.

Hence, proved.

### Question 8. For any Î”ABC show that (c2 + b2 â€“ a2) tan A = (a2 + c2 â€“ b2) tan B = (a2 + b2 â€“ c2) tan C

Solution:

According to sine rule in Î”ABC,

sin A/a = sin B/b = sin C/c = k (constant)

According to Cosine formula,

cos A = (b2 + c2 â€“ a2)/2bc

2bc cos A = (b2 + c2 â€“ a2)

(b2 + c2 â€“ a2) tan A = 2bc cos A tan A

= 2bc sin A

= 2kabc . . . . (1)

Also, cos B = (a2 + c2 â€“ b2)/2ac

2ac cos B = (a2 + c2 â€“ b2)

(a2 + c2 â€“ b2) tan B = 2ac cos B tan B

= 2ac sin B

= 2kabc . . . . (2)

Also, cos C = (a2 + b2 â€“ c2)/2ab

2ab cos C = (a2 + b2 â€“ c2)  . . . . (3)

(a2 + b2 â€“ c2) tan C = 2ab cos C tan C

= 2ab sin C

= 2kabc . . . . (3)

From (1), (2) and (3), we get,

(c2 + b2 â€“ a2) tan A = (a2 + c2 â€“ b2) tan B = (a2 + b2 â€“ c2) tan C

Hence, proved.

### Question 9. For any Î”ABC show that:

Solution:

According to sine rule in Î”ABC,

a/sin A = b/sin B = c/sin C = k (constant)

Here, L.H.S. =

= R.H.S.

Hence, proved.

### Question 10. For any Î”ABC show that:

a(cos B + cos C â€“ 1) + b(cos C + cos A â€“ 1) + c(cos A + cos B â€“ 1) = 0

Solution:

According to projection formula, we get,

a = b cos C + c cos B

b = c cos A + a cos C

c = a cos B + b cos A

Here, L.H.S. = a(cos B + cos C â€“ 1) + b(cos C + cos A â€“ 1) + c(cos A + cos B â€“ 1)

= a cos B + a cos C â€“ a + b cos C + b cos A â€“ b + c cos A + c cos B â€“ c

= c â€“ b cos A + a cos C â€“ a + a â€“ c cos B + b cos A â€“ b + b â€“ a cos C + c cos B â€“ c

= 0

= R.H.S.

Hence, proved.

Previous Article
Next Article
Article Tags :