Class 11 RD Sharma Solutions – Chapter 29 Limits – Exercise 29.8 | Set 1
Question 1. limx→π/2[π/2 – x].tanx
Solution:
We have,
limx→π/2[π/2 – x].tanx
Let us considered, y = [π/2 – x]
Here, x→π/2, y→0
= limy→0[y.tan(π/2 – y)]
= limy→0[y.{sin(π/2 – y)/cos(π/2 – y)]
= limy→0[y.{cosy/siny}]
= limy→0[y/siny].cosy
= limy→0[cosy] [Since, limy→0[siny/y] = 1]
= 1
Question 2. limx→π/2[sin2x/cosx]
Solution:
We have,
limx→π/2[sin2x/cosx]
= limx→π/2[2sinx.cosx/cosx]
= 2Limx→π/2[sinx]
= 2
Question 3. limx→π/2[cos2x/(1 – sinx)]
Solution:
We have,
limx→π/2[cos2x/(1 – sinx)]
= limx→π/2[(1 – sin2x)/(1 – sinx)]
= limx→π/2[(1 – sinx)(1 + sinx)/(1 – sinx)]
= limx→π/2[(1 + sinx)]
= 1 + 1
= 2
Question 4. limx→π/2[(1 – sinx)/cos2x]
Solution:
We have,
limx→π/2[(1 – sinx)/cos2x]
= limx→π/2[(1 – sinx)/(1 – sin2x)]
= limx→π/2[(1 – sinx)/(1 – sinx)(1 + sinx)]
= limx→π/2[1/(1 + sinx)]
= 1/(1 + 1)
= 1/2
Question 5. limx→a[(cosx – cosa)/(x – a)]
Solution:
We have,
limx→a[(cosx – cosa)/(x – a)]
=
=
= -2sin[(a + a)/2] × 1 × (1/2)
= -sina
Question 6. limx→π/4[(1 – tanx)/(x – π/4)]
Solution:
We have,
limx→π/4[(1 – tanx)/(x – π/4)]
Let us considered, y = [x – π/4]
Here, x→π/4, y→0
=
=
=
=
=
= -2 × 1 × [1/(1 – 0)]
= -2
Question 7. limx→π/2[(1 – sinx)/(π/4 – x)2]
Solution:
We have,
limx→π/2[(1 – sinx)/(π/4 – x)2]
Let us considered, y = [π/2 – x]
Here, x→π/2, y→0
=
= limy→0[(1 – cosy)/y2]
=
= 2 × 1 × (1/4)
= (1/2)
Question 8. limx→π/3[(√3 – tanx)/(π – 3x)]
Solution:
We have,
limx→π/3[(√3 – tanx)/(π – 3x)]
Let us considered, y = [π/3 – x]
When, x→π/3, y→0
=
=
=
=
=
= (4/3) × 1 × [1/(1 + 0)]
= (4/3)
Question 9. limx→a[(asinx – xsina)/(ax2 – xa2)]
Solution:
We have,
limx→a[(asinx – xsina)/(ax2 – xa2)]
= limx→a[(asinx – xsina)/{ax(x – a)}]
Let us considered, y = [x – a]
When, x→a, y→0
= limy→0[{asin(y + a) – (y + a)sina)}/{a(y + a)y}]
= limy→0[(a.siny.cosa + asina.cosy – ysina – asina)/{a(y + a)y}]
= limy→0[{a.siny.cosa + a.sina.(cosy – 1) – y.sina}/{a(y + a)y}]
= limy→0[{a.siny.cosa + a.sina.2sin2(y/2) – t.sina}/{a(y + a)y}]
= limy→0[a.siny.cosa/a(y + a)y] – limy→0[2.a.sina.sin2(y/2)/a(y + a)y] + limy→0[y.sina/a(a + y)y]
= [(a.cosa)/a2] – [(sina)/a2] + 0
= [(a.cosa – sina)/a2]
Question 10. limx→π/2[{√2 – √(1 + sinx)}/cos2x]
Solution:
We have,
limx→π/2[{√2 – √(1 + sinx)}/cos2x]
On rationalizing the numerator, we get
= limx→π/2[{2 – (1 + sinx)}/cos2x{√2 + √(1 + sinx)}]
= limx→π/2[(1 – sinx)/(1 – sin2x){√2 + √(1 + sinx)}]
= limx→π/2[(1 – sinx)/(1 – sinx)(1 + sinx){√2 + √(1 + sinx)}]
= limx→π/2[1/(1 + sinx){√2 + √(1 + sinx)}]
= 1/{(1 + 1)(√2 + √2)}
= 1/4√2
Question 11. limx→π/2[{√(2 – sinx) – 1}/(π/2 – x)2]
Solution:
We have,
limx→π/2[{√(2 – sinx) – 1}/(π/2 – x)2]
Let us considered, y = [π/2 – x]
Here, x→π/2, y→0
=
= limy→0[{√(2 – cosy) – 1}/y2]
On rationalizing the numerator, we get
= limy→0[{(2 – cosy) – 1}/y2{√(2 – cosy) – 1}]
= limy→0[{1 – cosy}/y2{√(2 – cosy) – 1}]
=
=
= 2/4(1 + 1)
= 1/4
Question 12. limx→π/4[(√2 – cosx – sinx)/(π/4 – x)2]
Solution:
We have,
limx→π/4[(√2 – cosx – sinx)/(π/4 – x)2]
=
=
=
=
= 2√2/4
= (1/√2)
Question 13. limx→π/8[(cot4x – cos4x)/(π – 8x)3]
Solution:
We have,
limx→π/8[(cot4x – cos4x)/(π – 8x)3]
= limx→π/8[(cot4x – cos4x)/83(π/8 – x)3]
Let us considered, (π/8 – x) = y
When x→π/8, y→0
=
= limx→0[(tan4x-sin4x)/83(π/8-x)3]
= limx→0[(sin4x/cos4x-sin4x)/83(π/8-x)3]
=
=
=
=
=
= (2 × 4 × 1 × 4 × 1)/(83)
= 1/16
Question 14. limx→a[(cosx – cosa)/(√x – √a)]
Solution:
We have,
limx→a[(cosx – cosa)/(√x – √a)]
=
On rationalizing the denominator, we get
=
=
= -2 × sina × 1 × (1/2) × 2√a
= -2√a.sina
Question 15. limx→π[{√(5 + cosx) – 2}/(π – x)2]
Solution:
We have,
limx→π[{√(5 + cosx) – 2}/(π – x)2]
Let us considered, y = [π – x]
When, x→π, y→0
=
= limy→0[{√(5 – cosy) – 2}/y2]
On rationalizing the numerator, we get
=
= limy→0[{1 – cosy}/y2{√(5 – cosy)-2}]
=
=
= 2 × (1/4) × {1/(2 + 2)}
= (1/8)
Question 16. limx→a[(cos√x – cos√a)/(x – a)]
Solution:
We have,
limx→a[(cos√x – cos√a)/(x – a)]
=
=
= -2sin√a × 1 × (1/2√a) × (1/2)
= -(sin√a/2√a)
Question 17. limx→a[(sin√x – sin√a)/(x – a)]
Solution:
We have,
limx→a[(sin√x – sin√a)/(x – a)]
=
=
= 2cos√a × 1 × (1/2√a) × (1/2)
= (cos√a/2√a)
Question 18. limx→1[(1 – x2)/sin2πx]
Solution:
We have,
limx→1[(1 – x2)/sin2πx]
When, x→1, h→0
= limh→0[{1-(1-h)2}/sin2π(1-h)]
= limh→0[(2h-h2)/-sin2πh]
= limh→0[{h(2-h)}/sin2πh]
=
=
= -2/2π
= -1/π
Question 19. limx→π/4[{f(x) – f(π/4)}/{x – π/4}]
Solution:
We have,
limx→π/4[{f(x) – f(π/4)}/{x – π/4}]
When, x→π/4, h→0
= limh→0[{f(π/4 + h) – f(π/4)}/{π/4 + h – π/4}]
It is given that f(x) = sin2x
= limh→0[{sin(π/2 + 2h) – sin(π/2)}/h]
= limh→0[(cos2h – 1)/h]
= limh→0[{-2sin2h}/h]
= -2Limh→0[(sinh/h)2] × h
= -2 × 1 × 0
= 0
Please Login to comment...