Skip to content
Related Articles

Related Articles

Improve Article

Class 12 RD Sharma Solutions – Chapter 9 Continuity – Exercise 9.1 | Set 3

  • Last Updated : 26 May, 2021
Geek Week

Question 31. If f(x)=\begin{cases}\frac{2^{x+2}-16}{4^x-16},& \text{if }x\neq2 \\k,& \text{if }x=2\end{cases}     is continuous at x = 2, find k.

Solution: 

Given that,

f(x)=\begin{cases}\frac{2^{x+2}-16}{4^x-16},& \text{if }x\neq2 \\k,& \text{if }x=2\end{cases}

Also, f(x) is continuous at x = 2

So, LHL = RHL = f(2)        …..(i)



Now,

f(2) = k  ……(ii)

Let us consider LHL,

\lim_{x\to2^-}f(x) =\lim_{h\to0}f(2-h)

=\lim_{h\to0}\frac{2^{(2-h)+2}-16}{4^{(2-h)}-16}

=\lim_{h\to0}\frac{2^{4-h}-16}{4^{(2-h)}-16}

=\lim_{h\to0}\frac{2^4.2^{-h}-16}{4^2.4^{-h}-16}

=\lim_{h\to0}\frac{16.2^{-h}-16}{16.4^{-h}-16}



=\lim_{h\to0}\frac{16(2^{-h}-1)}{16(4^{-h}-1)}

=\lim_{h\to0}\frac{2^{-h}-1}{(2^{-h})^2-1^2}

=\lim_{h\to0}\frac{2^{-h}-1}{(2^{-h}-1)(2^{-h}+1)}=1/2          ……(iii)

Using eq(i), (ii) and (iii), we get

k = 1/2

Question 32. If f(x)=\begin{cases}\frac{cos^2x-sin^2x-1}{\sqrt{x^2+1}-1},& \text{if }x\neq0 \\k,& \text{if }x=0\end{cases}     is continuous at x = 0, find k.

Solution:

Given that, 

f(x)=\begin{cases}\frac{cos^2x-sin^2x-1}{\sqrt{x^2+1}-1},& \text{if }x\neq0 \\k,& \text{if }x=0\end{cases}

Also, f(x) is continuous at x = 2

So, LHL = RHL



Now,

\lim_{x\to0}f(x)=f(0)

⇒ \lim_{x\to0}\frac{cos^2x-sin^2x-1}{\sqrt{x^2+1}-1}=k

⇒ \lim_{x\to0}\frac{1-sin^2x-sin^2x-1}{\sqrt{x^2+1}-1}=k

⇒ \lim_{x\to0}\frac{-2sin^2x}{\sqrt{x^2+1}-1}=k

⇒ \lim_{x\to0}\frac{-2(sin^2x)(\sqrt{x^2+1}+1)}{(\sqrt{x^2+1}-1)(\sqrt{x^2+1}+1)}=k

⇒ \lim_{x\to0}\frac{-2(sin^2x)(\sqrt{x^2+1}+1)}{x^2}=k

⇒ -2\lim_{x\to0}\frac{(sin^2x)(\sqrt{x^2+1}+1)}{x^2}=k

⇒ -2\lim_{x\to0}(\frac{sinx}{x})^2\lim_{x\to0}(\sqrt{x^2+1}+1)=k

⇒ -2 × 1 × (1 + 1) = k



⇒ k = -4

Question 33. Extend the definition of the following by continuity f(x) = \frac{1-cos7(x-π)}{5(x-π)^2}       at the point x = π.

Solution: 

Given that, 

\frac{1-cos7(x-π)}{5(x-π)^2}

As we know that a f(x) is continuous at x = π if,

LHL = RHL = f(π)  ……(i)

Let us consider LHL,

\lim_{x\toπ^-}f(x) =\lim_{h\to0}f(π-h)

=\lim_{h\to0}\frac{1-cos7(π-h-π)}{5((π-h)-π)^2}

=\lim_{h\to0}\frac{2sin^2(7/2)h}{5h^2}



=\lim_{h\to0}(2/5)(\frac{sin(7/2)h}{(7/2)h})^2×(7/2)^2

= (2/5) × (49/4) = 49/10

 Thus, from eq(i) we get,

f(π) = 49/10

Hence, f(x) is continuous at x = π

Question 34. If f(x) = \frac{2x+3sinx}{3x+2sinx}      , x ≠ 0 is continuous at x = 0, then find f(0).

Solution:

Given that, 

f(x) = \frac{2x+3sinx}{3x+2sinx}

Also, f(x) is continuous at x = 0

So, LHL = RHL = f(0)     ……(i)

Let us consider LHL,

\lim_{x\to0^-}f(x) =\lim_{h\to0}f(0-h)

=\lim_{h\to0}\frac{2(-h)+3sin(-h)}{3(-h)+2sin(-h)}

=\lim_{h\to0}\frac{-2h-3sinh}{-3h-2sinh}

=\lim_{h\to0}\frac{\frac{2h+3sinh}{h}}{\frac{3h+2sinh}{h}}

=\lim_{h\to0}\frac{2+3\frac{sinh}{h}}{3+2\frac{sinh}{h}}=\frac{2+3}{3+2}=1

From eq(i) we get,

f(0) = 1

Question 35. Find the value of k for which f(x)=\begin{cases}\frac{1-cos4x}{8x^2}  ,& \text{when }x\neq0 \\k,& \text{when }x=0\end{cases}     is continuous at x = 0

Solution:

Given that, 



f(x)=\begin{cases}\frac{1-cos4x}{8x^2}  ,& \text{when }x\neq0 \\k,& \text{when }x=0\end{cases}

Also, f(x) is continuous at x = 0

LHL = RHL = f(0)     …..(i)

f(0) = k

Let us consider LHL,

\lim_{x\to0^-}f(x) =\lim_{h\to0}f(0-h)

=\lim_{h\to0}\frac{1-cos4(-h)}{8(-h)^2}

=\lim_{h\to0}\frac{1-cos4h}{8h^2}

=\lim_{h\to0}\frac{2sin^22h}{8h^2}

=\lim_{h\to0}(\frac{sin2h}{2h})^2=1



Thus, from eq(i) we get,

k = 1

Question 36. In each of the following, find the value of the constant k so that the given function is continuous at the indicated point:

(i) f(x)=\begin{cases}\frac{1-cos2kx}{x^2},& \text{if }x\neq0 \\8,& \text{if }x=0\end{cases}     at x = 0

Solution:

Given that, 

f(x)=\begin{cases}\frac{1-cos2kx}{x^2},& \text{if }x\neq0 \\8,& \text{if }x=0\end{cases}

Also, f(x) is continuous at x = 0

\lim_{x\to0}f(x) =f(0)

⇒ \lim_{x\to0}\frac{1-cos2kx}{x^2}=8

⇒ \lim_{x\to0}\frac{2k^2sin^2kx}{k^2x^2}=8

⇒ 2k^2\lim_{x\to0}(\frac{sinkx}{kx})^2=8



⇒ 2k2 × 1 = 8

⇒ k2 = 4

⇒ k = ±2

(ii) f(x)=\begin{cases}(x-1)\frac{tanπx}{2},& \text{if }x\neq1 \\k,& \text{if }x=1\end{cases}   at x = 1

Solution:

Given that, 

f(x)=\begin{cases}(x-1)\frac{tanπx}{2},& \text{if }x\neq1 \\k,& \text{if }x=1\end{cases}

Also, f(x) is continuous at x = 1

\lim_{x\to1}f(x) =f(1)

⇒ \lim_{x\to1}(x-1)tan(πx/2)=k

Now, on putting x – 1 = y, we get

\lim_{y\to0}ytan\frac{π(y+1)}{2}=k

⇒ \lim_{y\to0}ytan(\frac{πy}{2}+π/2)=k

⇒ \lim_{y\to0}ytan(\frac{π}{2}+\frac{πy}{2})=k

⇒ -\lim_{y\to0}ycot(\frac{π}{2})=k

⇒ \frac{-2}{π}\lim_{y\to0}\frac{\frac{πy}{2}cos(\frac{πy}{2})}{sin\frac{πy}{2}}=k

⇒ \frac{-2}{π}\frac{\lim_{y\to0}cos(\frac{πy}{2})}{\lim_{y\to0}(\frac{sin(\frac{πy}{2})}{\frac{πy}{2}})}=k

⇒ (-2/π) × (1/1) = k

⇒ k = (-2/π)

(iii) f(x)=\begin{cases}k(x^2-2x),& \text{if }x<0 \\cosx,& \text{if }x\geq0\end{cases}    at x = 0

Solution:

Given that, 



f(x)=\begin{cases}k(x^2-2x),& \text{if }x<0 \\cosx,& \text{if }x\geq0\end{cases}

Also, f(x) is continuous at x = 0

Let us consider LHL, at x = 0

\lim_{x\to0^-}f(x) =\lim_{h\to0}f(0-h)

=\lim_{h\to0}f(-h)

=\lim_{h\to0}k(h^2+2h)=0

Let us consider RHL at x = 0

\lim_{x\to0^+}f(x) =\lim_{h\to0}f(0+h)

=\lim_{h\to0}f(h)

=\lim_{h\to0}cosh=1

\lim_{x\to0^-}f(x)≠\lim_{x\to0^+}f(x)

Hence, no value of k exists for which function is continuous at x = 0.

(iv) f(x)=\begin{cases}kx+1,& \text{if }x\leqπ \\cosx,& \text{if }x>π\end{cases}   at x = π

Solution:

Given that, 

f(x)=\begin{cases}kx+1,& \text{if }x\leqπ \\cosx,& \text{if }x>π\end{cases}

Also, f(x) is continuous at x = π

Let us consider LHL 

\lim_{x\toπ^-}f(x) =\lim_{h\to0}f(π-h)

=\lim_{h\to0}k(π-h)+1=kπ+1

Let us consider RHL 



\lim_{x\toπ^+}f(x) =\lim_{h\to0}f(π+h)

=\lim_{h\to0}cos(π+h)

cosπ = -1

As we know that f(x) is continuous at x = π, so

\lim_{x\toπ^-}f(x)=\lim_{x\toπ^+}f(x)

⇒ kπ + 1 = -1

⇒ k = (-2/π)

(v) f(x)=\begin{cases}kx+1,& \text{if }x\leq5 \\3x-5,& \text{if }x>5\end{cases}   at x = 5

Solution:

Given that, 

f(x)=\begin{cases}kx+1,& \text{if }x\leq5 \\3x-5,& \text{if }x>5\end{cases}

Also, f(x) is continuous at x = 5

Let us consider LHL 

\lim_{x\to5^-}f(x)=\lim_{h\to0}f(5-h)

=\lim_{h\to0}k(5-h)+1

= 5k + 1

Let us consider RHL 

\lim_{x\to5^+}f(x)=\lim_{h\to0}f(5+h)

=\lim_{h\to0}3(5+h)-5

= 10

As we know that f(x) is continuous at x = 5, so



\lim_{x\to5^-}f(x)=\lim_{x\to5^+}f(x)

⇒ 5k + 1 = 10

⇒ k = 9/5

(vi) f(x)=\begin{cases}\frac{x^2-25}{x-5},& \text{if }x\neq5 \\k,& \text{if }x=5\end{cases}   at x = 5 

Solution:

Given that, 

f(x)=\begin{cases}\frac{x^2-25}{x-5},& \text{if }x\neq5 \\k,& \text{if }x=5\end{cases}

Also, f(x) is continuous at x = 5

So, 

f(x) = (x2 – 25)/(x – 5), if x ≠ 5 & f(x) = k, if x = 5

⇒ f(x)= {(x – 5)(x+5)/(x-5)}, if x ≠ 5 & f(x) = k, if x = 5

⇒ f(x)= (x + 5), if x ≠ 5 & f(x) = k, if x = 5

As we know that f(x) is continuous at x = 5, so

\lim_{x\to5}f(x)=f(5)

⇒ \lim_{x\to5}(x+5)=k

⇒ k = 5 + 5 = 10

(vii) f(x)=\begin{cases}kx^2,& \text{if }x\geq1 \\4,& \text{if }x<1\end{cases}   at x = 1

Solution:

Given that, 

f(x)=\begin{cases}kx^2,& \text{if }x\geq1 \\4,& \text{if }x<1\end{cases}

Also, f(x) is continuous at x = 1

Let us consider LHL 

\lim_{x\to1^-}f(x)=\lim_{h\to0}f(1-h)

=\lim_{h\to0}4=4

Let us consider RHL 

\lim_{x\to1^+}f(x)=\lim_{h\to0}f(1+h)

=\lim_{h\to0}k(1+h)^2

= k

As we know that f(x) is continuous at x = 1, so

\lim_{x\to1^-}f(x)=\lim_{x\to1^+}f(x)

⇒ k = 4

(viii) f(x)=\begin{cases}k(x^2+2),& \text{if }x\leq0 \\3x+1,& \text{if }x>0\end{cases}   at x = 0

Solution:



Given that, 

f(x)=\begin{cases}k(x^2+2),& \text{if }x\leq0 \\3x+1,& \text{if }x>0\end{cases}

Also, f(x) is continuous at x = 0

Let us consider LHL 

\lim_{x\to0^-}f(x)=\lim_{h\to0}f(0-h)

=\lim_{h\to0}k((-h)^2+2)

= 2k

Let us consider RHL 

\lim_{x\to0^+}f(x)=\lim_{h\to0}f(0+h)

=\lim_{h\to0}3h+1

= 1

As we know that f(x) is continuous at x = 0, so

\lim_{x\to0^-}f(x)=\lim_{x\to0^+}f(x)

⇒ 2k = 1

⇒ k = 1/2

(ix) f(x)=\begin{cases}\frac{x^3+x^2-16x+20}{(x-2)^2},& \text{if }x\neq2 \\k,& \text{if }x=2\end{cases}   at x = 2

Solution:

Given that, 

f(x)=\begin{cases}\frac{x^3+x^2-16x+20}{(x-2)^2},& \text{if }x\neq2 \\k,& \text{if }x=2\end{cases}

Also, f(x) is continuous at x = 2

f(x)= \frac{x^3+x^2-16x+20}{(x-2)^2}        , if x ≠ 2 & f(x) = k, if x = 2

⇒ f(x)= \frac{x^3+x^2-16x+20}{x^2-4x+4}         , if x ≠ 2 & f(x) = k, if x = 2

⇒ f(x)= \frac{(x+5)(x^2-4x+4)}{x^2-4x+4}         , if x ≠ 2 & f(x) = k, if x = 2

⇒ f(x)= (x + 5), if x ≠ 2 & f(x) = k, if x = 2

As we know that f(x) is continuous at x = 2, so

\lim_{x\to2}f(x)=f(2)

⇒ \lim_{x\to2}(x+5)=f(2)

⇒ k = 2 + 5 = 7

Question 37. Find the values of a and b so that the function f given by 

f(x)=\begin{cases}1,& \text{if }x\leq3 \\ax+b,& \text{if }3<x<5\\7, &\text{if }x\geq5\end{cases}    is continuous at x = 3 and x = 5.

Solution:

Given that, 

f(x)=\begin{cases}1,& \text{if }x\leq3 \\ax+b,& \text{if }3<x<5\\7, &\text{if }x\geq5\end{cases}



Let us consider LHL at x = 3,

\lim_{x\to3^-}f(x)=\lim_{h\to0}f(3-h)

=\lim_{h\to0}(1)

= 1

Let us consider RHL at x = 3,

\lim_{x\to3^+}f(x)=\lim_{h\to0}f(3+h)

=\lim_{h\to0}a(3+h)+b

= 3a + b

Let us consider LHL at x = 5,

\lim_{x\to5^-}f(x)=\lim_{h\to0}f(5-h)

=\lim_{h\to0}(a(5-h)+b)

= 5a + b

Let us consider RHL at x = 5,

\lim_{x\to5^+}f(x)=\lim_{h\to0}f(5+h)

=\lim_{h\to0}7

= 7

It is given that f(x) is continuous at x = 3 and x = 5, then

\lim_{x\to3^-}f(x)=\lim_{x\to3^+}f(x)         and \lim_{x\to5^-}f(x)=\lim_{x\to5^+}f(x)

⇒ 1 = 3a + b …..(i) 

and 5a + b = 7 …….(ii)

On solving eq(i) and (ii), we get

a = 3 and b = -8

Question 38. If f(x)=\begin{cases}\frac{x^2}{2},& \text{if }0\leq x \leq 1 \\2x^2-3x+(\frac{3}{2}),& \text{if }1<x\leq2\end{cases}   . Show that f is continuous at x = 1.

Solution:

Given that, 

f(x)=\begin{cases}\frac{x^2}{2},& \text{if }0\leq x \leq 1 \\2x^2-3x+(\frac{3}{2}),& \text{if }1<x\leq2\end{cases}

So, 

Let us consider LHL at x = 1,

\lim_{x\to1^-}f(x)=\lim_{h\to0}f(1-h)

=\lim_{h\to0}\frac{(1-h)^2}{2}

= 1/2



Let us consider RHL at x = 1,

\lim_{x\to1^+}f(x)=\lim_{h\to0}f(1+h)

=\lim_{h\to0}[2(1+h)^2-3(1+h)+3/2]

= 2 – 3 + 3/2 = 1/2

Also,

f(1) = (1)2/2 = 1/2

\lim_{x\to1^-}f(x)=\lim_{x\to1^+}f(x)=f(1)

LHL = RHL = f(1)

Hence, the f(x) is continuous at x = 1

Question 39. Discuss the continuity of the f(x) at the indicated points:

(i) f(x) = |x| + |x – 1| at x = 0, 1.

Solution:

Given that, 

f(x) = |x| + |x – 1|

So, here we check the continuity of the given f(x) at x = 0,

Let us consider LHL at x = 0,

\lim_{x\to0^-}f(x)=\lim_{h\to0}f(0-h)

=\lim_{h\to0}[|0-h|+|0-h-1|]=1

Let us consider RHL at x = 0,

\lim_{x\to0^+}f(x)=\lim_{h\to0}f(0+h)

=\lim_{h\to0}[|0+h|+|0+h-1|]=1

Also,

f(0) = |0| + |0 – 1| = 0 + 1 = 1

LHL = RHL = f(0)

Now, we check the continuity of the given f(x) at x = 1,

Let us consider LHL at x = 1,

\lim_{x\to1^-}f(x)=\lim_{h\to0}f(1-h)

=\lim_{h\to0}f(|1-h|+|1-h-1|)=1+0

= 1

Let us consider RHL at x = 1

\lim_{x\to1^+}f(x)=\lim_{h\to0}f(1+h)

=\lim_{h\to0}f(|1+h|+|1+h-1|)=1+0

= 1

Also,

f(1) = |1| + |1 – 1| = 1 + 0 = 1

LHL = RHL = f(1)

Hence, f(x) is continuous at x = 0, 1.

(ii) f(x) = |x – 1| + |x + 1| at x = -1, 1.

Solution:

Given that, 

f(x) = |x – 1| + |x + 1| at x = -1, 1.

So, here we check the continuity of the given f(x) at x = -1,

Let us consider LHL at x = -1,

\lim_{x\to-1^-}f(x)=\lim_{h\to0}f(-1-h)

=\lim_{h\to0}[|-1-h-1|+|-1-h+1|]=2+0=2

Let us consider RHL at x = -1,

\lim_{x\to-1^+}f(x)=\lim_{h\to0}f(-1+h)

=\lim_{h\to0}[|-1+h-1|+|-1+h+1|]=2+0=2

Also,

f(-1) = |-1 – 1| + |-1 + 1| = |-2| = 2

LHL = RHL = f(-1)

Now, we check the continuity of the given f(x) at x = 1,

Let us consider LHL at x = 1,



\lim_{x\to1^-}f(x)=\lim_{h\to0}f(1-h)

=\lim_{h\to0}f(|1-h-1|+|1-h+1|)=0+2

= 2

\lim_{x\to1^+}f(x)=\lim_{h\to0}f(1+h)

=\lim_{h\to0}f(|1+h-1|+|1+h+1|)=0+2

= 2

Also,

f(1) = |1 + 1| + |1 – 1| = 2

LHL = RHL = f(1)

Hence, f(x) is continuous at x = -1, 1.

Question 40. Prove that f(x)=\begin{cases}\frac{x-|x|}{x},& \text{if }x\neq0 \\2,& \text{if }x=0\end{cases}   is discontinuous at x = 0.

Solution:

Prove that f(x)=\begin{cases}\frac{x-|x|}{x},& \text{if }x\neq0 \\2,& \text{if }x=0\end{cases}   is discontinuous at x = 0.

Proof:

Let us consider LHL at x = 0,

\lim_{x\to0^-}f(x)=\lim_{h\to0}f(0-h)

=\lim_{h\to0}f(-h)

=\lim_{h\to0}2=2

Let us consider RHL at x = 0,

\lim_{x\to0^+}f(x)=\lim_{h\to0}f(0+h)

=\lim_{h\to0}f(h)

=\lim_{h\to0}0=0

LHL ≠ RHL

Hence, f(x) is discontinuous at x = 0.

Question 41. If f(x)=\begin{cases}2x^2+k,& \text{if }x\geq0 \\-2x^2+k,& \text{if }x<0\end{cases}    then what should be the value of k so that f(x) is continuous at x = 0.

Solution:

Given that,

f(x)=\begin{cases}2x^2+k,& \text{if }x\geq0 \\-2x^2+k,& \text{if }x<0\end{cases}

Let us consider LHL at x = 0,

\lim_{x\to0^-}f(x)=\lim_{h\to0}f(0-h)

=\lim_{h\to0}f(-h)

=\lim_{h\to0}-2(-h)^2+k



= k

Let us consider RHL at x = 0,

\lim_{x\to0^+}f(x)=\lim_{h\to0}f(0+h)

=\lim_{h\to0}f(h)

=\lim_{h\to0}f(2h^2+k)

= k

It is given that f(x) is continuous at x = 0.

LHL = RHL = f(0)

⇒ \lim_{x\to0^-}f(x)=\lim_{x\to0^+}f(x)=k

k can be any real number.

Question 42. For what value λ of is the function

f(x)=\begin{cases}λ(x^2-2x),& \text{if }x\leq0 \\4x+1,& \text{if }x>0\end{cases}   continuous at x = 0 ? What about continuity at x = ±1?

Solution:

Given that,

f(x)=\begin{cases}λ(x^2-2x),& \text{if }x\leq0 \\4x+1,& \text{if }x>0\end{cases}

Check for x = 0, 

Hence, there is no value of λ for which f(x) is continuous at x = 0.

Now for x = 1,

f(1) = 4x + 1 = 4 × 1 + 1 = 5

Hence, for any values of λ, f is continuous at x = 1.

Now for x = -1, 

f(-1) = λ(1 + 2)= 3λ

=\lim_{x\to-1}λ(1+2)=3λ

 =\lim_{x\to-1}f(x)=f(-1)

Hence, for any values of λ, f is continuous at x=-1.

Question 43. For what values of k is the following function continuous at x = 2? 

 f(x)=\begin{cases}2x+1,& \text{if }x<2 \\k,& \text{if }x=2\\3x-1,& \text{if }x>2\end{cases}

Solution:

Given that,

f(x)=\begin{cases}2x+1,& \text{if }x<2 \\k,& \text{if }x=2\\3x-1,& \text{if }x>2\end{cases}

We have,

Let us consider LHL at x = 2,

=\lim_{x\to2^-}f(x)=\lim_{h\to0}f(2-h)

=\lim_{h\to0}(2(2-h)+1)

= 5

Let us consider RHL at x = 2,

\lim_{x\to2^+}f(x)=\lim_{h\to0}f(2+h)

=\lim_{h\to0}3(2+h)-1

= 5

Also,

f(2) = k

It is given that f(x) is continuous at x = 2.

LHL = RHL = f(2)

⇒ 5 = 5 = k



Hence, for k = 5, f(x) is continuous at x = 2.

Question 44. Let f(x)=\begin{cases}1-sin^3x3cos^2x,& \text{if }x<(\frac{π}{2}) \\a,& \text{if }x=(\frac{π}{2})\\\frac{b(1-sinx)}{(π-2x)^2},& \text{if }x>(\frac{π}{2})\end{cases}    If f(x) is continuous at x = (π/2), find a and b.

Solution:

Given that,

f(x)=\begin{cases}1-sin^3x3cos^2x,& \text{if }x<(\frac{π}{2}) \\a,& \text{if }x=(\frac{π}{2})\\\frac{b(1-sinx)}{(π-2x)^2},& \text{if }x>(\frac{π}{2})\end{cases}

Let us consider LHL at x = π/2

=\lim_{x\to(\frac{π}{2})^-}f(x)=\lim_{h\to0}f(\frac{π}{2}-h)

=\lim_{h\to0}\frac{1-sin^3(\frac{π}{2}-h)}{3cos^2(\frac{π}{2}-h)}

=\lim_{h\to0}\frac{1-cos^3h}{3sin^2h}

=\frac{1}{3}\lim_{h\to0}(\frac{(1-cosh)(1+cos^2h+cosh)}{(1-cosh)(1+cosh)})

=\frac{1}{3}\lim_{h\to0}(\frac{(1+cos^2h+cosh)}{(1+cosh)})

=\frac{1}{3}(\frac{1+1+1}{1+1})

= 1/2

Let us consider RHL at x = π/2

=\lim_{x\to(\frac{π}{2})^+}f(x)=\lim_{h\to0}f(\frac{π}{2}+h)

=\lim_{h\to0}(\frac{b[1-sin(\frac{π}{2}+h)]}{[π-2(\frac{π}{2}+h)]^2})

=\lim_{h\to0}(\frac{b(1-cosh)}{[-2h]^2})

=\lim_{h\to0}(\frac{2bsin^2(\frac{h}{2})}{4h^2})

=\lim_{h\to0}(\frac{2bsin^2(\frac{h}{2})}{\frac{16h^2}{4}})

=(\frac{b}{8})\lim_{h\to0}(\frac{sin(\frac{h}{2})}{\frac{h}{2}})^2

= b/8 × 1



= b/8

Also,

f(π/2) = a

It is given that f(x) is continuous at x = π/2.

LHL = RHL = f(π/2)

So, 

⇒ 1/2 = b/8 = a

⇒ a = 1/2 and b = 4

Question 45. If the functions f(x), defined below is continuous at x = 0, find the value of k,

f(x)=\begin{cases}\frac{1-cos2x}{2x^2},& \text{if }x<0 \\k,& \text{if }x=0\\\frac{x}{|x|},& \text{if }x>0\end{cases}

Solution:

Given that,

f(x)=\begin{cases}\frac{1-cos2x}{2x^2},& \text{if }x<0 \\k,& \text{if }x=0\\\frac{x}{|x|},& \text{if }x>0\end{cases}

Let us consider LHL at x = 0,

=\lim_{x\to0^-}f(x)=\lim_{h\to0}f(0-h)

=\lim_{h\to0}(\frac{1-cos2(-h)}{2(-h)^2})

=\lim_{h\to0}(\frac{1-cos2h}{2h^2})

=\frac{1}{2}\lim_{h\to0}(\frac{2sin^2h}{h^2})

=\frac{2}{2}\lim_{h\to0}(\frac{sin^2h}{h^2})

=\frac{2}{2}\lim_{h\to0}(\frac{sinh}{h})^2

= 1 × 1

Let us consider RHL at x = 0,

\lim_{x\to0^+}f(x)=\lim_{h\to0}f(0+h)

=\lim_{h\to0}f(h)

=\lim_{h\to0}1=1

Also,

f(0) = k

It is given that f(x) is continuous at x = 0,

LHL = RHL = f(0)

So, 

⇒ 1 = 1 = k

Hence, the required value of k is 1.

Question 46. Find the relationship between ‘a’ and ‘b’ so that function ‘f’ defined by

f(x)=\begin{cases}ax+1,& \text{if }x\leq3 \\bx+3,& \text{if }x>3\\\end{cases}   is continuous at x = 3.

Solution:

Given that,

f(x)=\begin{cases}ax+1,& \text{if }x\leq3 \\bx+3,& \text{if }x>3\\\end{cases}

Let us consider LHL at x = 3,

\lim_{x\to3^-}f(x)=\lim_{h\to0}f(3-h)

=\lim_{h\to0}a(3-h)+1

= 3a + 1

Let us consider RHL at x = 3,

\lim_{x\to3^+}f(x)=\lim_{h\to0}f(3+h)

=\lim_{h\to0}b(3+h)+3



= 3b + 3

It is given that f(x) is continuous at x = 3,

LHL = RHL = f(3)

So, 

⇒ 3a + 1 = 3b + 3

⇒ 3a – 3b = 2

Hence, the required relationship between a and b is 3a – 3b = 2.

Attention reader! All those who say programming isn’t for kids, just haven’t met the right mentors yet. Join the  Demo Class for First Step to Coding Coursespecifically designed for students of class 8 to 12. 

The students will get to learn more about the world of programming in these free classes which will definitely help them in making a wise career choice in the future.




My Personal Notes arrow_drop_up
Recommended Articles
Page :