Class 12 RD Sharma Solutions – Chapter 19 Indefinite Integrals – Exercise 19.23 | Set 2
Question 9. Evaluate ∫ 1/ cosx+sinx dx
Solution:
Let us assume I = ∫ 1/ cosx+sinx dx
Put sinx = 2tan(x/2)/ 1+tan2x/2
cosx = 1-tan2(x/2)/1+tan2(x/2)
= ∫ 1/ {1-tan2(x/2)/1+tan2x/2} + {2tan(x/2)/1+tan2x/2} dx
= ∫ 1+tan2(x/2)/ 2tan(x/2)+1-tan2(x/2) dx
= ∫ sec2(x/2)/ 2tan(x/2)+1-tan2(x/2) dx (i)
Let tanx/2 = t
1/2 sec2x/2 dx = dt
Put the above value in eq. (i)
= ∫ 2dt/ 2t+1-t2
= -∫ 2dt/ t2-2t-1
= -∫ 2dt/ t2-2t+1-1-1
= -∫ 2dt/ (t-1)2-(√2)2
= ∫ 2dt/ (√2)2-(t-1)2
Integrate the above eq. then, we get
= 2/(2√2) log|√2+t-1/√2-t+1| +c
Hence, I = 1/√2 log|√2+tanx/2-1/ √2-tanx/2+1| +c
Question 10. Evaluate ∫ 1/ 5-4cosx dx
Solution:
Let us assume I = ∫ 1/ 5-4cosx dx
Put cosx = 1-tan2(x/2)/ 1+tan2(x/2)
= ∫1/ 5-4{1-tan2(x/2)/ 1+tan2(x/2)} dx
= ∫ 1+tan2(x/2)/ 5(1+tan2x/2)-4(1-tan2x/2) dx
= ∫ sec2(x/2)/ 5+5tan2x/2-4+4tan2x/2 dx
= ∫ sec2(x/2)/ 9tan2x/2+1 dx (i)
Let 3tanx/2 = t
3/2 sec2x/2 dx = dt
Put the above value in eq. (i)
= 2/3 ∫ dt/ t2+1
On integrate the above eq. then, we get
= 2 × 1/3tan-1t +c
= 2/3 tan-1{3tan(x/2)} +c
Hence, I = 2/3 tan-1{3tan(x/2)} +c
Question 11. Evaluate ∫ 1/ 2+sinx+cosx dx
Solution:
Let us assume I = ∫ 1/ 2+sinx+cosx dx
Put sinx = 2tan(x/2)/ 1+tan2x/2
cosx = 1-tan2(x/2)/1+tan2(x/2)
= ∫ 1/ 2+{2tan(x/2)/1+tan2x/2} + {1-tan2(x/2)/1+tan2x/2} dx
= ∫ 1+tan2(x/2)/ 2+2tan2(x/2)+2tan(x/2)+1-tan2(x/2) dx
= ∫ sec2(x/2)/ tan2x/2+2tanx/2+3 dx (i)
Let tanx/2 = t
1/2 sec2x/2 dx = dt
Put the above value in eq. (i)
= ∫ 2dt/ t2+2t+3
= ∫ 2dt/ t2+2t+1-1+3
= 2∫ dt/ (t+1)2+(√2)2
Integrate the above eq. then, we get
= 2/√2 tan-1(t+1/ √2) +c
Hence, I = √2tan-1(tanx/2+1/ √2) +c
Question 12. Evaluate ∫ 1/ sinx+√3cosx dx
Solution:
Let us assume I = ∫ 1/ sinx+√3cosx dx
Put sinx = 2tan(x/2)/ 1+tan2x/2
cosx = 1-tan2(x/2)/1+tan2(x/2)
= ∫ 1/ {2tan(x/2)/1+tan2x/2}+√3{1-tan2(x/2)/1+tan2x/2} dx
= ∫ 1+tan2(x/2)/ 2tan(x/2)+√3-√3tan2(x/2) dx
= ∫ sec2(x/2)/ 2tan(x/2)+√3-√3tan2(x/2) dx (i)
Let tanx/2 = t
1/2 sec2x/2 dx = dt
Put the above value in eq. (i)
= ∫ 2dt/ 2t+√3-√3t2
= -2/√3 ∫ dt/ t2-2/√3t+(1/√3)2-(1/√3)2-1
= -2/√3 ∫ dt/ (t-1/√3)2-(2/√3)2
= 2/√3 ∫ dt/ (2/√3)2-(t-1/√3)2
Integrate the above eq. then, we get
= 2/√3 x 1/2(2/√3) log|2/√3+t+1/√3/ 2/√3-t+1/√3| +c
= 1/2 log|√3t+1/ 3-√3t|+c
Hence, I = 1/2 log|1+√3+tanx/2/ 3-√3tanx/2| +c
Question 13. Evaluate ∫ 1/ √3sinx+cosx dx
Solution:
Let us assume I = ∫ 1/ √3sinx+cosx dx
√3 = rcosθ, and 1=rsinθ
tanθ=1/√3
θ = π/6
r = √3+1=2
I = ∫ 1/ rcosθsinx+rsinθcosx dx
= 1/r ∫ 1/ sin(x+θ) dx
= 1/2 ∫ cosec(x+θ) dx
Integrate the above eq. then, we get
= 1/2 log|tan(x/2+θ/2)| +c
Hence, I = 1/2 log|tan(x/2+π/12)| +c
Question 14. Evaluate ∫ 1/ sinx-√3cosx dx
Solution:
Let us assume I = ∫ 1/ sinx-√3cosx dx
1 = rcosθ, and √3=rsinθ
tanθ=√3
θ = π/3
r = √3+1=2
I = ∫ 1/ rcosθsinx-rsinθcosx dx
= 1/r ∫ 1/ sin(x-θ) dx
= 1/2 ∫ cosec(x-θ) dx
Integrate the above eq. then, we get
= 1/2 log|tan(x/2-θ/2)| +c
Hence, I = 1/2 log|tan(x/2-π/6)| +c
Question 15. Evaluate ∫ 1/ 5+7cosx+sinx dx
Solution:
Let us assume I = ∫ 1/ 5+7cosx+sinx dx
Put sinx = 2tan(x/2)/ 1+tan2x/2
cosx = 1-tan2(x/2)/1+tan2(x/2)
= ∫ 1/ 5+7{1-tan2(x/2)/1+tan2(x/2)} + {2tan(x/2)/ 1+tan2x/2} dx
= ∫ 1+tan2(x/2)/ 5(1+tan2x/2)+7-7tan2(x/2)+2tan(x/2) dx
= ∫ sec2(x/2)/ -2tan2x/2+12+2tanx/2 dx (i)
Let tanx/2 = t
1/2 sec2x/2 dx = dt
Put the above value in eq. (i)
= ∫ 2dt/ -2t2+12+2t
= -∫ dt/ t2-t-6
= – ∫ dt/ t2-2t(1/2)+(1/2)2-(1/2)2-6
= – ∫ dt/ (t-1/2)2-(5/2)2
Integrate the above eq. then, we get
= -1/2(5/2) log|t-1/2-5/2/ t-1/2+5/2| +c
= -1/5 log|t-3/ t+2| +c
Hence, I = 1/5 log|tanx/2+2/ tanx/2-3| +c
Please Login to comment...