Open In App

Class 12 RD Sharma Solutions – Chapter 5 Algebra of Matrices – Exercise 5.2 | Set 1

Last Updated : 03 Mar, 2021
Improve
Improve
Like Article
Like
Save
Share
Report

Question 1(i): Compute the following sum:\begin{bmatrix} 3 & -2\\ 1 & 4 \end{bmatrix} + \begin{bmatrix} -2 & 4\\ 1 & 3 \end{bmatrix} .

Solution:

As the matrices are of the same dimensions, we can add them to get a matrix of the same dimensions which is 2×2.

=>\begin{bmatrix} 3-2 & -2+4 \\ 1+1 & 4+3 \end{bmatrix}

=>\begin{bmatrix} 1 & 2 \\ 2 & 7 \end{bmatrix}

Question 1(ii): Compute the following sum:\begin{bmatrix} 2 & 1 & 3 \\ 0 & 3 & 5 \\ -1 & 2 & 5 \\ \end{bmatrix} + \begin{bmatrix} 1 & -2 & 3 \\ 2 & 6 & 1 \\ 0 & -3 & 1 \\ \end{bmatrix} .

Solution:

As the matrices are of the same dimensions, we can add them to get a matrix of the same dimensions which is 3×3.

=>\begin{bmatrix} 2+1 & 1-2 & 3+3 \\ 0+2 & 3+6 & 5+1\\ -1+0 & 2-3 & 5+1 \\ \end{bmatrix}

=>\begin{bmatrix} 3 & -1 & 6 \\ 2 & 9 & 6 \\ -1 & -1 & 6 \\ \end{bmatrix}

Question 2: Let A =\begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix} , B =\begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix} and C =\begin{bmatrix} -2 & 5 \\ 3 & 4 \end{bmatrix} . Find each of the following:

(i): 2A – 3B

Solution:

Both the matrices A and B are of the same order which is 2×2, hence the operation can be performed.

=> 2A =2\begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} 4 & 8 \\ 6 & 4 \end{bmatrix}

=> 3B =3\begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix} = \begin{bmatrix} 3 & 9 \\ -6 & 15 \end{bmatrix}

=> 2A – 3B =\begin{bmatrix} 4-3 & 8-9 \\ 6+6 & 4-15 \end{bmatrix}

=> 2A – 3B =\begin{bmatrix} 1 & -1 \\ 12 & -11 \end{bmatrix}

(ii): B – 4C

Solution:

Both the matrices B and C are of the same order which is 2×2, hence the operation can be performed.

=> B =\begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix}

=> 4C =4\begin{bmatrix} -2 & 5 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} -8 & 20 \\ 12 & 16 \end{bmatrix}

=> B – 4C =\begin{bmatrix} 1+8 & 3-20 \\ -2-12 & 5-16 \end{bmatrix}

=> B – 4C =\begin{bmatrix} 9 & -17 \\ -14 & -11 \end{bmatrix}

(iii): 3A – C

Solution:

Both the matrices A and C are of the same order which is 2×2, hence the operation can be performed.

=> 3A =3\begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} 6 & 12 \\ 9 & 6 \end{bmatrix}

=> C =\begin{bmatrix} -2 & 5 \\ 3 & 4 \end{bmatrix}

=> 3A – C =\begin{bmatrix} 6+2 & 12-5 \\ 9-3 & 6-4 \end{bmatrix}

=> 3A – C =\begin{bmatrix} 8 & 7 \\ 6 & 2 \end{bmatrix}

(iv): 3A -2B + 3C

Solution:

The matrices A, B and C are of the same order which is 2×2, hence the operation can be performed.

=> 3A =3\begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} 6 & 12 \\ 9 & 6 \end{bmatrix}

=> 2B =2\begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix} = \begin{bmatrix} 2 & 6 \\ -4 & 10 \end{bmatrix}

=> 3C =3\begin{bmatrix} -2 & 5 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} -6 & 15 \\ 9 & 12 \end{bmatrix}

=> 3A – 2B + 3C =\begin{bmatrix} 6-2-6 & 12-6+15 \\ 9+4+9 & 6-10+12 \end{bmatrix}

=> 3A – 2B + 3C =\begin{bmatrix} -2 & 21 \\ 22 & 8 \end{bmatrix}

Question 3: If A =\begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix} , B =\begin{bmatrix} -1 & 0 & 2\\ 3 & 4 & 1 \end{bmatrix} , C =\begin{bmatrix} -1 & 2 & 3\\ 2 & 1 & 0 \end{bmatrix} , find:

(i): A + B and B + C

Solution:

A and B can not be added since A’s order is 2×2 which is different from B’s order which is 2×3.

B+C can be computed and is solved as follows:

=> B + C =\begin{bmatrix} -1-1 & 0+2 & 2+3 \\ 3+2 & 4+1 & 1+0 \end{bmatrix}

=> B + C =\begin{bmatrix} -2 & 2 & 5 \\ 5 & 5 & 1 \end{bmatrix}

(ii): 2B + 3A and 3C – 4B

Solution:

A and B can not be added since A’s order is 2×2 which is different from B’s order which is 2×3, and thus 2B + 3A can not be calculated.

3C – 4B can be computed and is solved as follows:

=> 3C =3\begin{bmatrix} -1 & 2 & 3\\ 2 & 1 & 0 \end{bmatrix} = \begin{bmatrix} -3 & 6 & 9\\ 6 & 3 & 0 \end{bmatrix}

=> 4B =4\begin{bmatrix} -1 & 0 & 2\\ 3 & 4 & 1 \end{bmatrix} = \begin{bmatrix} -4 & 0 & 8\\ 12 & 16 & 4 \end{bmatrix}

=> 3C – 4B =\begin{bmatrix} -3+4 & 6+0 & 9-8 \\ 6-12 & 3-16 & 10-4 \end{bmatrix}

=> 3C – 4B =\begin{bmatrix} 1 & 6 & 1 \\ -6 & -13 & 6 \end{bmatrix}

Question 4: Let A =\begin{bmatrix} -1 & 0 & 2 \\ 3 & 1 & 4 \end{bmatrix} , B =\begin{bmatrix} 0 & -2 & 5 \\ 1 & -3 & 1 \end{bmatrix} and C =\begin{bmatrix} 1 & -5 & 2 \\ 6 & 0 & -4 \end{bmatrix} . Compute 2A – 3B + 4C.

Solution:

The result can be computed since A, B and C are of the same order which is 2×3.

=> 2A =2\begin{bmatrix} -1 & 0 & 2 \\ 3 & 1 & 4 \end{bmatrix} = \begin{bmatrix} -2 & 0 & 4 \\ 6 & 2 & 8 \end{bmatrix}

=> 3B =3\begin{bmatrix} 0 & -2 & 5 \\ 1 & -3 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -6 & 15 \\ 3 & -9 & 3 \end{bmatrix}

=> 4C =4\begin{bmatrix} 1 & -5 & 2 \\ 6 & 0 & -4 \end{bmatrix} = \begin{bmatrix} 4 & -20 & 8 \\ 24 & 0 & -16 \end{bmatrix}

=> 2A – 3B + 4C =\begin{bmatrix} -2-0+4 & 0+6-20 & 4-15+8 \\ 6-3+24 & 2+9+0 & 8-3-16 \end{bmatrix}

=> 2A – 3B + 4C =\begin{bmatrix} 2 & -14 & -3 \\ 27 & 11 & -11 \end{bmatrix}

Question 5: If A =diag(2, -5, 9), B = diag(1, 1, -4) and C = diag(-6, 3, 4), find:

(i): A – 2B

Solution:

In the given question A and B are diagonal matrices of the order 3×3, thus the only non-zero elements are present in the diagonal.

=> A = diag(2, -5, 9)

=> 2B = 2. diag(1, 1, -4) = diag(2, 2, -8)

=> A – 2B = diag(2-2, -5-2, 9+8)

=> A – 2B = diag(0, -7, 17)

(ii): B + C – 2A

Solution:

In the given question A, B and C are diagonal matrices of the order 3×3, thus the only non-zero elements are present in the diagonal.

=> B = diag(1, 1, -4)

=> C = diag(-6, 3, 4)

=> 2A = 2. diag(2, -5, 9) = diag(4, -10, 18)

=> B + C – 2A = diag(1-6-4, 1+3+10, -4+4-18)

=> B + C – 2A = diag(-9, 14, -18)

(iii): 2A + 3B – 5C

Solution:

In the given question A, B and C are diagonal matrices of the order 3×3, thus the only non-zero elements are present in the diagonal.

=> 2A = 2. diag(2, -5, 9) = diag(4, -10, 18)

=> 3B = 3. diag(1, 1, -4) = diag(3, 3, -12)

=> 5C = 5. diag(-6, 3, 4) = diag(-30, 15, 20)

=> 2A + 3B – 5C = diag(4+3+30, -10+3-15, 18-12-20)

=> 2A + 3B – 5C = diag(37, -22, -14)

Question 6: Given the matrices A =\begin{bmatrix} 2 & 1 & 1 \\ 3 & -1 & 0 \\ 0 & 2 & 4 \\ \end{bmatrix} , B =\begin{bmatrix} 9 & 7 & -1 \\ 3 & 5 & 4 \\ 2 & 1 & 6 \\ \end{bmatrix} and C =\begin{bmatrix} 2 & -4 & 3 \\ 1 & -1 & 0 \\ 9 & 4 & 5 \\ \end{bmatrix} . Verify that (A + B) + C = A + (B + C).

Solution:

Given L.H.S :

=> (A + B) = \begin{bmatrix} 2 & 1 & 1 \\ 3 & -1 & 0 \\ 0 & 2 & 4 \\ \end{bmatrix} + \begin{bmatrix} 9 & 7 & -1 \\ 3 & 5 & 4 \\ 2 & 1 & 6 \\ \end{bmatrix}

=> (A + B) =\begin{bmatrix} 2+9 & 1+7 & 1-1 \\ 3+3 & -1+5 & 0+4 \\ 0+2 & 2+1 & 4+6 \\ \end{bmatrix}

=> (A + B) =\begin{bmatrix} 11 & 8 & 0 \\ 6 & 4 & 4 \\ 2 & 3 & 10 \\ \end{bmatrix}

=> (A + B) + C =\begin{bmatrix} 11 & 8 & 0 \\ 6 & 4 & 4 \\ 2 & 3 & 10 \\ \end{bmatrix} + \begin{bmatrix} 2 & -4 & 3 \\ 1 & -1 & 0 \\ 9 & 4 & 5 \\ \end{bmatrix}

=> (A + B) + C =\begin{bmatrix} 11+2 & 8-4 & 0+3 \\ 6+1 & 4-1 & 4+0 \\ 2+9 & 3+4 & 10+5 \\ \end{bmatrix}

=> (A + B) + C =\begin{bmatrix} 13 & 4 & 3 \\ 7 & 3 & 4 \\ 11 & 7 & 15 \\ \end{bmatrix}

Given R.H.S :

=> (B + C) =\begin{bmatrix} 9 & 7 & -1 \\ 3 & 5 & 4 \\ 2 & 1 & 6 \\ \end{bmatrix} + \begin{bmatrix} 2 & -4 & 3 \\ 1 & -1 & 0 \\ 9 & 4 & 5 \\ \end{bmatrix}

=> (B + C) =\begin{bmatrix} 9+2 & 7-4 & -1+3 \\ 3+1 & 5-1 & 4+0 \\ 2+9 & 1+4 & 6+5 \\ \end{bmatrix}

=> (B + C) =\begin{bmatrix} 11 & 3 & 2 \\ 4 & 4 & 4 \\ 11 & 5 & 11 \\ \end{bmatrix}

=> A + (B + C) =\begin{bmatrix} 2 & 1 & 1 \\ 3 & -1 & 0 \\ 0 & 2 & 4 \\ \end{bmatrix} + \begin{bmatrix} 11 & 3 & 2 \\ 4 & 4 & 4 \\ 11 & 5 & 11 \\ \end{bmatrix}

=> A + (B + C) =\begin{bmatrix} 2+11 & 1+3 & 1+2 \\ 3+4 & -1+4 & 0+4 \\ 0+11 & 2+5 & 4+11 \\ \end{bmatrix}

=> A + (B + C) =\begin{bmatrix} 13 & 4 & 3 \\ 7 & 3 & 4 \\ 11 & 7 & 15 \\ \end{bmatrix}

Hence R.H.S = L.H.S has been verified.

Question 7: Find the matrices X and Y, if X + Y =\begin{bmatrix} 5 & 2 \\ 0 & 9 \end{bmatrix} and X – Y =\begin{bmatrix} 3 & 6 \\ 0 & -1 \end{bmatrix} .

Solution:

We know that (X + Y) + (X – Y) = 2X.

=> (X + Y) + (X – Y) =\begin{bmatrix} 5 & 2 \\ 0 & 9 \end{bmatrix} + \begin{bmatrix} 3 & 6 \\ 0 & -1 \end{bmatrix}

=> 2X =\begin{bmatrix} 5+3 & 2+6 \\ 0+0 & 9-1 \end{bmatrix}

=> 2X =\begin{bmatrix} 8 & 8 \\ 0 & 8 \end{bmatrix}

=> X =\dfrac {1}{2}\begin{bmatrix} 8 & 8 \\ 0 & 8 \end{bmatrix}

=> X =\begin{bmatrix} 4 & 4 \\ 0 & 4 \end{bmatrix}

Now Y = (X + Y) – X

=> Y =\begin{bmatrix} 5 & 2 \\ 0 & 9 \end{bmatrix} - \begin{bmatrix} 4 & 4 \\ 0 & 4 \end{bmatrix}

=> Y =\begin{bmatrix} 5-4 & 2-4 \\ 0-0 & 9-4 \end{bmatrix}

=> Y =\begin{bmatrix} 1 & -2 \\ 0 & 5 \end{bmatrix}

Question 8: Find X, if Y =\begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix} and 2X + Y =\begin{bmatrix} 1 & 0 \\ -3 & 2 \end{bmatrix} .

Solution:

Given 2X + Y =\begin{bmatrix} 1 & 0 \\ -3 & 2 \end{bmatrix}

=> 2X +\begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix} =\begin{bmatrix} 1 & 0 \\ -3 & 2 \end{bmatrix}

=> 2X =\begin{bmatrix} 1 & 0 \\ -3 & 2 \end{bmatrix} - \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}

=> 2X =\begin{bmatrix} 1-3 & 0-2 \\ -3-1 & 2-4 \end{bmatrix}

=> 2X =\begin{bmatrix} -2 & -2 \\ -4 & -2 \end{bmatrix}

=> X =\dfrac{1}{2}\begin{bmatrix} -2 & -2 \\ -4 & -2 \end{bmatrix}

=> X =\begin{bmatrix} -1 & -1 \\ -2 & -1 \end{bmatrix}

Question 9: Find matrices X and Y, if 2X – Y =\begin{bmatrix} 6 & -6 & 0\\ -4 & 2 & 1\end{bmatrix} and X + 2Y =\begin{bmatrix} 3 & 2 & 5\\ -2 & 1 & -7\end{bmatrix} .

Solution:

We know that 2 (2X – Y) + (X + 2Y) = 4X – 2Y + X + 2Y = 5X .

=> 2 (2X – Y) =2\begin{bmatrix} 6 & -6 & 0\\ -4 & 2 & 1\end{bmatrix}

=> 2 (2X -Y) =\begin{bmatrix} 12 & -12 & 0\\ -8 & 4 & 2\end{bmatrix}

=> 2 (2X – Y) + (X + 2Y) =\begin{bmatrix} 12 & -12 & 0\\ -8 & 4 & 2\end{bmatrix} + \begin{bmatrix} 3 & 2 & 5\\ -2 & 1 & -7\end{bmatrix}

=> 5X =\begin{bmatrix} 12+3 & -12+2 & 0+5\\ -8-2 & 4+1 & 2-7\end{bmatrix}

=> 5X =\begin{bmatrix} 15 & -10 & 5\\ -10 & 5 & -5\end{bmatrix}

=> X =\dfrac{1}{5}\begin{bmatrix} 15 & -10 & 5\\ -10 & 5 & -5\end{bmatrix}

=> X =\begin{bmatrix} 3 & -2 & 1\\ -2 & 1 & -1\end{bmatrix}

As (X + 2Y) =\begin{bmatrix} 3 & 2 & 5\\ -2 & 1 & -7\end{bmatrix}

=>\begin{bmatrix} 3 & -2 & 1\\ -2 & 1 & -1\end{bmatrix} + 2Y = \begin{bmatrix} 3 & 2 & 5\\ -2 & 1 & -7\end{bmatrix}

=> 2Y =\begin{bmatrix} 3 & 2 & 5\\ -2 & 1 & -7\end{bmatrix} -\begin{bmatrix} 3 & -2 & 1\\ -2 & 1 & -1\end{bmatrix}

=> 2Y =\begin{bmatrix} 0 & 4 & 4\\ 0 & 0 & -6\end{bmatrix}

=> Y =\dfrac{1}{2}\begin{bmatrix} 0 & 4 & 4\\ 0 & 0 & -6\end{bmatrix}

=> Y =\begin{bmatrix} 0 & 2 & 2\\ 0 & 0 & -3\end{bmatrix}

Question 10: If X – Y =\begin{bmatrix} 1 & 1 & 1\\ 1 & 1 & 0 \\1 & 0 & 0 \end{bmatrix} and X + Y =\begin{bmatrix} 3 & 5 & 1\\ -1 & 1 & 4 \\11 & 8 & 0 \end{bmatrix} , find X and Y.

Solution:

We know that (X + Y) + (X – Y) = 2X.

=> 2X =\begin{bmatrix} 3 & 5 & 1\\ -1 & 1 & 4 \\11 & 8 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 1 & 1\\ 1 & 1 & 0 \\1 & 0 & 0 \end{bmatrix}

=> 2X =\begin{bmatrix} 1+3 & 1+5 & 1+1\\ 1-1 & 1+1 & 0+4 \\1+11 & 0+8 & 0+0 \end{bmatrix}

=> 2X =\begin{bmatrix} 4 & 6 & 2\\ 0 & 2 & 4 \\12 & 8 & 0 \end{bmatrix}

=> X =\dfrac {1}{2}\begin{bmatrix} 4 & 6 & 2\\ 0 & 2 & 4 \\12 & 8 & 0 \end{bmatrix}

=> X =\begin{bmatrix} 2 & 3 & 1\\ 0 & 1 & 2 \\6 & 4 & 0 \end{bmatrix}

Also (X + Y) – (X -Y) = 2Y.

=> 2Y =\begin{bmatrix} 3 & 5 & 1\\ -1 & 1 & 4 \\11 & 8 & 0 \end{bmatrix} - \begin{bmatrix} 1 & 1 & 1\\ 1 & 1 & 0 \\1 & 0 & 0 \end{bmatrix}

=> 2Y =\begin{bmatrix} 3-1 & 5-1 & 1-1\\ -1-1 & 1-1 & 4-0 \\11-1 & 8-0 & 0-0 \end{bmatrix}

=> 2Y =\begin{bmatrix} 2 & 4 & 0\\ -2 & 0 & 4 \\10 & 8 & 0 \end{bmatrix}

=> Y =\dfrac{1}{2}\begin{bmatrix} 2 & 4 & 0\\ -2 & 0 & 4 \\10 & 8 & 0 \end{bmatrix}

=> Y =\begin{bmatrix} 1 & 2 & 0\\ -1 & 0 & 2 \\5 & 4 & 0 \end{bmatrix}



Previous Article
Next Article

Similar Reads

Class 12 RD Sharma Solutions- Chapter 5 Algebra of Matrices - Exercise 5.1 | Set 2
Question 11: Find x, y and z so that A = B, where A= [Tex]\begin{bmatrix} x-2 & 3 & 2z\\ 18z & y+2 & 6z \end{bmatrix} = \begin{bmatrix} y & z & 6\\ 6y & x & 2y \end{bmatrix} [/Tex]. Solution: As it is given that the matrices are equal, every element at a given index on the Left Hand Side (LHS) must be equal to the el
10 min read
Class 12 RD Sharma Solutions - Chapter 5 Algebra of Matrices - Exercise 5.1 | Set 1
Question 1: If a matrix has 8 elements, what are the possible orders it can have? What if it has 5 elements? Solution: Part 1: Let the matrix be of mxn dimension. Hence, mxn = 8. Then, all we have to do is, find the divisors of 8, which are : 1, 2, 4, 8. Thus, the possible orders are: 1x8, 8x1, 2x4 and 4x2. Part 2: Following a similar approach: Sin
17 min read
Class 12 RD Sharma Solutions - Chapter 5 Algebra of Matrices - Exercise 5.2 | Set 2
Question 11: Find matrix A, if[Tex]\begin{bmatrix} 1 & 2 & -1\\ 0 & 4 & 9 \end{bmatrix} [/Tex]+ A =[Tex]\begin{bmatrix} 9 & -1 & 4\\ -2 & 1 & 3 \end{bmatrix} [/Tex]. Solution: Given,[Tex]\begin{bmatrix} 1 & 2 & -1\\ 0 & 4 & 9 \end{bmatrix} [/Tex]+ A =[Tex]\begin{bmatrix} 9 & -1 & 4\\ -2 &
13 min read
Class 12 RD Sharma Solutions - Chapter 5 Algebra of Matrices - Exercise 5.3 | Set 1
Question 1. Compute the indicated products: (i) [Tex]\begin{bmatrix}a & b\\-b & a\end{bmatrix}\begin{bmatrix}a & -b\\b & a\end{bmatrix}[/Tex] Solution: We have, [Tex]\begin{bmatrix}a & b\\-b & a\end{bmatrix}\begin{bmatrix}a & -b\\b & a\end{bmatrix}=\begin{bmatrix}a(a) +b(b) & a(-b) +b(a) \\-b(a) +a(b) & (-b)
27 min read
Class 12 RD Sharma Solutions - Chapter 5 Algebra of Matrices - Exercise 5.3 | Set 2
Question 26. If[Tex]\begin{bmatrix}1 & -1 & x\end{bmatrix}\begin{bmatrix}0 & 1 & -1\\2 & 1 & 3\\1 & 1 & 1\end{bmatrix}\begin{bmatrix}0\\1\\1\end{bmatrix} [/Tex]= 0, find x. Solution: We have, =>[Tex]\begin{bmatrix}1 & -1 & x\end{bmatrix}\begin{bmatrix}0 & 1 & -1\\2 & 1 & 3\\1 & 1 &
23 min read
Class 12 RD Sharma Solutions - Chapter 5 Algebra of Matrices - Exercise 5.3 | Set 3
Question 52. If A =[Tex]\begin{bmatrix}1 & 0 & -3\\2 & 1 & 3\\0 & 1 & 1\end{bmatrix} [/Tex], then verify that A2 + A = A (A + I), where I is the identity matrix. Solution: We have, A =[Tex]\begin{bmatrix}1 & 0 & -3\\2 & 1 & 3\\0 & 1 & 1\end{bmatrix}[/Tex] A2 =[Tex]\begin{bmatrix}1 & 0 & -3\\2
25 min read
Class 12 RD Sharma Solutions- Chapter 5 Algebra of Matrices - Exercise 5.5
Question 1: [Tex]If\ A=\begin{bmatrix}2&3\\4&5\end{bmatrix},\ prove\ that\ A-A^T\ is\ a\ skew-symmetric\ matrix.[/Tex] Solution: Given: [Tex]If\ A=\begin{bmatrix}2&3\\4&5\end{bmatrix},\ that\ A-A^T\ is\ a\ skew-symmetric\ matrix.[/Tex] Consider, [Tex](A-A^T)=\left(\begin{bmatrix}2&3\\4&5\end{bmatrix}-\begin{bmatrix}2&3\\
4 min read
Class 12 RD Sharma Solutions- Chapter 5 Algebra of Matrices - Exercise 5.4
Question 1: Let A = [Tex]\begin{bmatrix} 2 & -3 \\ -7 & 5 \end{bmatrix} [/Tex]and B = [Tex]\begin{vmatrix} 1 & 0 \\ 2 & -4 \end{vmatrix} [/Tex]verify that (i) (2A)T = 2AT (ii) (A + B)T = AT + BT (iii) (A − B)T = AT − BT (iv) (AB)T = BT AT Solution: (i) Given: A = [Tex]\begin{bmatrix} 2 & -3 \\ -7 & 5 \end{bmatrix} [/Tex]and
6 min read
Class 12 RD Sharma Solutions - Chapter 23 Algebra of Vectors - Exercise 23.6 | Set 1
Question 1: Find the magnitude of the vector [Tex]\vec{a} = 2\hat{i}+3\hat{j}-6\hat{k} [/Tex]. Solution: Magnitude of a vector [Tex]x\hat{i}+y\hat{j}+z\hat{k} = \sqrt{x^2+y^2+z^2}[/Tex] =>[Tex] |\vec{a}| = \sqrt{2^2+3^2+(-6)^2}[/Tex] => [Tex]|\vec{a}| = \sqrt{4+9+36}[/Tex] => [Tex]|\vec{a}| = \sqrt{49}[/Tex] =>[Tex] |\vec{a}| = 7[/Tex]
4 min read
Class 12 RD Sharma Solutions - Chapter 23 Algebra of Vectors - Exercise 23.6 | Set 2
Question 11: Find the position vector of the mid-point of the vector joining the points P([Tex]2\hat{i}-3\hat{j}+4\hat{k} [/Tex]) and Q([Tex]4\hat{i}+\hat{j}-2\hat{k} [/Tex]). Solution: The mid-point of the line segment joining 2 vectors is given by: => [Tex]\vec{R} = \dfrac{\vec{P}+\vec{Q}}{2}[/Tex] => [Tex]\vec{R} = \dfrac{(2\hat{i}-3\hat{j
4 min read