Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Class 12 RD Sharma Solutions – Chapter 28 The Straight Line in Space – Exercise 28.5

  • Last Updated : 16 Jun, 2021

Question 1. Find the shortest distance between the pair of lines whose vector equation is: 

(i) (\vec{r}=3\hat{i}+8\hat{j}+3\hat{k}+λ(3\hat{i}-\hat{j}+\hat{k})  and \vec{r}=-3\hat{i}-7\hat{j}+6\hat{k}+μ(-3\hat{i}+2\hat{j}+4\hat{k})

Solution:

As we know that the shortest distance between the lines \vec{r}=\vec{a_1}+λ(\vec{b_1})  and \vec{r}=\vec{a_2}+μ(\vec{b_2})  is:

Attention reader! All those who say programming isn't for kids, just haven't met the right mentors yet. Join the  Demo Class for First Step to Coding Coursespecifically designed for students of class 8 to 12. 

The students will get to learn more about the world of programming in these free classes which will definitely help them in making a wise career choice in the future.

D= |\frac{(\vec{a_2}-\vec{a_1}).(\vec{b_1}×\vec{b_2})}{|\vec{b_1}×\vec{b_2}|}|



Now, \vec{a_2}-\vec{a_1}=-3\hat{i}-7\hat{j}+6\hat{k}-(3\hat{i}+8\hat{j}+3\hat{k})

-6\hat{i}-15\hat{j}+3\hat{k}

(\vec{b_1}×\vec{b_2})=\left|\begin{array}{cc}\hat{i}&\hat{j}&\hat{k}\\3&-1&1\\-3&2&4\\\end{array}\right|

\hat{i}(-4-2)-\hat{j}(12+3)+\hat{k}(6-3)

-6\hat{i}-15\hat{j}+3\hat{k}

(\vec{a_2}-\vec{a_1}).(\vec{b_1}×\vec{b_2})=(-6\hat{i}-15\hat{j}+3\hat{k}).(-6\hat{i}-15\hat{j}+3\hat{k})

= 36 + 225 + 9

= 270



|\vec{b_1}×\vec{b_2}|=\sqrt{(-6)^2+(-15)^2+(3)^2}

\sqrt{36+225+9}

= √270 

On substituting the values in the formula, we have

SD = 270/√270 

= √270 

Shortest distance between the given pair of lines is 3√30 units.

(ii) \vec{r}=3\hat{i}+5\hat{j}+7\hat{k}+λ(\hat{i}-2\hat{j}+7\hat{k})  and \vec{r}=-\hat{i}-\hat{j}-\hat{k}+μ(7\hat{i}-6\hat{j}+\hat{k}).

Solution:

As we know that the shortest distance between the lines \vec{r}=\vec{a_1}+λ(\vec{b_1})  and \vec{r}=\vec{a_2}+μ(\vec{b_2})  is:

D= |\frac{(\vec{a_2}-\vec{a_1}).(\vec{b_1}×\vec{b_2})}{|\vec{b_1}×\vec{b_2}|}|



Now, \vec{a_2}-\vec{a_1}=-\hat{i}-\hat{j}-\hat{k}-(3\hat{i}+5\hat{j}+7\hat{k})

-4\hat{i}-6\hat{j}-8\hat{k}

-2(2\hat{i}+3\hat{j}+4\hat{k})

(\vec{b_1}×\vec{b_2})=\left|\begin{array}{cc}\hat{i}&\hat{j}&\hat{k}\\1&-2&7\\7&-6&1\\\end{array}\right|

8(5\hat{i}+6\hat{j}+\hat{k})

(\vec{a_2}-\vec{a_1}).(\vec{b_1}×\vec{b_2})=(-2(2\hat{i}+3\hat{j}+4\hat{k})).(8(5\hat{i}+6\hat{j}+\hat{k}))

= – 16 × 32

= – 512

|\vec{b_1}×\vec{b_2}|=8\sqrt{(5)^2+(6)^2+(1)^2}

8\sqrt{25+36+1}



8\sqrt{62}

On substituting the values in the formula, we have

SD = |\frac{-512}{8\sqrt{62}}|

Shortest distance between the given pair of lines is |\frac{512}{\sqrt{3968}}|  units.

(iii) \vec{r}=\hat{i}+2\hat{j}+3\hat{k}+λ(2\hat{i}+3\hat{j}+4\hat{k})  and \vec{r}=2\hat{i}+4\hat{j}+5\hat{k}+μ(3\hat{i}+4\hat{j}+5\hat{k})

Solution:

As we know that the shortest distance between the lines \vec{r}=\vec{a_1}+λ(\vec{b_1})  and \vec{r}=\vec{a_2}+μ(\vec{b_2})   is:

D= |\frac{(\vec{a_2}-\vec{a_1}).(\vec{b_1}×\vec{b_2})}{|\vec{b_1}×\vec{b_2}|}|

Now, \vec{a_2}-\vec{a_1}=2\hat{i}+4\hat{j}+5\hat{k}-(\hat{i}+2\hat{j}+3\hat{k})

\hat{i}+2\hat{j}+2\hat{k}

(\vec{b_1}×\vec{b_2})=\left|\begin{array}{cc}\hat{i}&\hat{j}&\hat{k}\\2&3&4\\3&4&5\\\end{array}\right|



-\hat{i}+2\hat{j}-\hat{k}

(\vec{a_2}-\vec{a_1}).(\vec{b_1}×\vec{b_2})=(\hat{i}+2\hat{j}+2\hat{k}).(-\hat{i}+2\hat{j}-\hat{k})

= 1

|\vec{b_1}×\vec{b_2}|=\sqrt{(-1)^2+(2)^2+(-1)^2}

\sqrt{6}

On substituting the values in the formula, we have

SD = |\frac{1}{\sqrt6}|

Shortest distance between the given pair of lines is 1/√6 units.

(iv) \vec{r}=(1-t)\hat{i}+(t-2)\hat{j}+(3-t)\hat{k}  and \vec{r}=(s+1)\hat{i}+(2s-1)\hat{j}-(2s+1)\hat{k}

Solution:

Above equations can be re-written as:



\vec{r}=(\hat{i}-2\hat{j}+3\hat{k})+t(-\hat{i}+\hat{j}-\hat{k})

and, \vec{r}=(\hat{i}-\hat{j}-\hat{k})+s(\hat{i}+2\hat{j}-2\hat{k})

As we know that the shortest distance between the lines \vec{r}=\vec{a_1}+λ(\vec{b_1})

and \vec{r}=\vec{a_2}+μ(\vec{b_2})  is:

D = |\frac{(\vec{a_2}-\vec{a_1}).(\vec{b_1}×\vec{b_2})}{|\vec{b_1}×\vec{b_2}|}|

= 9/3√2

Shortest distance is 3/√2 units.

(v) \vec{r}=(λ-1)\hat{i}+(λ+1)\hat{j}-(1+λ)\hat{k}  and \vec{r}=(1-μ)\hat{i}+(2μ-1)\hat{j}+(μ+2)\hat{k}

Solution:

The given equations can be written as:

\\vec{r}=(-\hat{i}+\hat{j}-\hat{k})+λ(\hat{i}+\hat{j}-\hat{k})  and \vec{r}=\hat{i}-\hat{j}+2\hat{k}+µ(-\hat{i}+2\hat{j}+\hat{k})



As we know that the shortest distance between the lines \vec{r}=\vec{a_1}+λ(\vec{b_1})  and \vec{r}=\vec{a_2}+μ(\vec{b_2})   is:

D= |\frac{(\vec{a_2}-\vec{a_1}).(\vec{b_1}×\vec{b_2})}{|\vec{b_1}×\vec{b_2}|}|

Now, (\vec{a_2}-\vec{a_1}).(\vec{b_1}×\vec{b_2})=(2\hat{i}-2\hat{j}+3\hat{k}).(3\hat{i}+3\hat{k})

= 15

|\vec{b_1}×\vec{b_2}|=\sqrt{(3)^2+(3)^2}

= 3√2 

Thus, distance between the lines is |\frac{15}{3\sqrt2}| = \frac{5}{\sqrt2}          units.

(vi) \vec{r}=(2\hat{i}-\hat{j}-\hat{k})+λ(2\hat{i}-5\hat{j}+2\hat{k})  and \vec{r}=(\hat{i}+2\hat{j}+\hat{k})+μ(\hat{i}-\hat{j}+\hat{k})

Solution:

As we know that the shortest distance between the lines \vec{r}=\vec{a_1}+λ(\vec{b_1})  and \vec{r}=\vec{a_2}+μ(\vec{b_2})  is:

D = |\frac{(\vec{a_2}-\vec{a_1}).(\vec{b_1}×\vec{b_2})}{|\vec{b_1}×\vec{b_2}|}|



Now, (\vec{a_2}-\vec{a_1}).(\vec{b_1}×\vec{b_2})=(-\hat{i}+3\hat{j}+2\hat{k}).(-3\hat{i}+3\hat{k})

|\vec{b_1}×\vec{b_2}|=\sqrt{(-3)^2+(3)^2}

= 3√2

Substituting the values in the formula, we have

The distance between the lines is |\frac{9}{3\sqrt2}| = \frac{3}{\sqrt2} units.

(vii) \vec{r}=\hat{i}+\hat{j}+λ(2\hat{i}-\hat{j}+\hat{k})  and \vec{r}=2\hat{i}+\hat{j}-\hat{k}+µ(3\hat{i}-5\hat{j}+2\hat{k})

Solution:

As we know that the shortest distance between the lines \vec{r}=\vec{a_1}+λ(\vec{b_1})  and \vec{r}=\vec{a_2}+μ(\vec{b_2})  is:

D= |\frac{(\vec{a_2}-\vec{a_1}).(\vec{b_1}×\vec{b_2})}{|\vec{b_1}×\vec{b_2}|}|

Now, (\vec{a_2}-\vec{a_1}).(\vec{b_1}×\vec{b_2})=(-\hat{i}+3\hat{j}+2\hat{k}).(-3\hat{i}+3\hat{k})

= 10



Substituting the values in the formula, we have:

The distance between the lines is 10/√59 units.

(viii) \vec{r}=(8+3λ)\hat{i}-(9+16λ)\hat{j}+(10+7λ)\hat{k}  and \vec{r}=15\hat{i}+29\hat{j}+5\hat{k}+µ(3\hat{i}+8\hat{j}-5\hat{k})

Solution:

As we know that the shortest distance between the lines \vec{r}=\vec{a_1}+λ(\vec{b_1})  and \vec{r}=\vec{a_2}+μ(\vec{b_2})  is:

D= |\frac{(\vec{a_2}-\vec{a_1}).(\vec{b_1}×\vec{b_2})}{|\vec{b_1}×\vec{b_2}|}|

Now, (\vec{a_2}-\vec{a_1}).(\vec{b_1}×\vec{b_2})=(-\hat{i}+3\hat{j}+2\hat{k}).(-3\hat{i}+3\hat{k})

= 1176

|\vec{b_1}×\vec{b_2}|=\sqrt{(-3)^2+(3)^2}          

= 84

Substituting the values in the formula, we have:



The distance between the lines is 1176/84 = 14 units.

Question 2. Find the shortest distance between the pair of lines whose cartesian equation is:

(i) \frac{x-1}{2}=\frac{y-2}{3}=\frac{z-5}{5}  and \frac{x-2}{3}=\frac{y-3}{4}=\frac{z-5}{5}

Solution:

The given lines can be written as:

\vec{r}=\hat{i}+2\hat{j}+\hat{k}+λ(2\hat{i}+4\hat{j}+3\hat{k})  and \vec{r}=2\hat{i}+3\hat{j}+5\hat{k}+µ(3\hat{i}+4\hat{j} +5\hat{k})

\vec{a_2}-\vec{a_1}=2\hat{i}+3\hat{j}+5\hat{k}-(\hat{i}+2\hat{j}+3\hat{k})

\hat{i}+\hat{j}+2\hat{k}

(\vec{b_1}×\vec{b_2})=\left|\begin{array}{cc}\hat{i}&\hat{j}&\hat{k}\\2&3&4\\3&4&5\\\end{array}\right|

-\hat{i}+2\hat{j}-\hat{k}

 (\vec{a_2}-\vec{a_1}).(\vec{b_1}×\vec{b_2})=(\hat{i}+\hat{j}+2\hat{k}).(-\hat{i}+2\hat{j}-\hat{k})

= –1



|\vec{b_1}×\vec{b_2}|=\sqrt{(-1)^2+(2)^2+(-1)^2}

= √6 

On substituting the values in the formula, we have:

SD = 1/√6 units.

(ii) \frac{x-1}{2}=\frac{y+1}{3}=z  and \frac{x+1}{3}=\frac{y-2}{1};z=2

Solution:

The given equations can also be written as:

\vec{r}=\hat{i}-\hat{j}+λ(2\hat{i}+3\hat{j}+\hat{k})  and \\vec{r}=-\hat{i}+2\hat{j}+2\hat{k}+μ(3\hat{i}+\hat{j})

As we know that the shortest distance between the lines \vec{r}=\vec{a_1}+λ(\vec{b_1})  and \vec{r}=\vec{a_2}+μ(\vec{b_2})  is:

D= |\frac{(\vec{a_2}-\vec{a_1}).(\vec{b_1}×\vec{b_2})}{|\vec{b_1}×\vec{b_2}|}|

(\vec{b_1}×\vec{b_2})=\left|\begin{array}{cc}\hat{i}&\hat{j}&\hat{k}\\2&3&1\\3&1&0\\\end{array}\right|



-\hat{i}+3\hat{j}-7\hat{k}

 (\vec{a_2}-\vec{a_1}).(\vec{b_1}×\vec{b_2})=(\hat{i}+\hat{j}+2\hat{k}).(-\hat{i}+2\hat{j}-\hat{k})

=  3

SD = 3/√59 units.

(iii) \frac{x-1}{-1}=\frac{y+2}{1}=\frac{z-3}{-2}  and \frac{x-1}{1}=\frac{y+1}{2}=\frac{z+1}{-2}

Solution:

The given equations can be re-written as:

\vec{r}=\hat{i}-2\hat{j}+3\hat{k}+ λ(-\hat{i}+\hat{j}+2\hat{k})  and \vec{r}=\hat{i}-\hat{j}-\hat{k}+µ(\hat{i}+2\hat{j}-2\hat{k})

(\vec{b_1}×\vec{b_2})=\left|\begin{array}{cc}\hat{i}&\hat{j}&\hat{k}\\-1&1&2\\1&2&-2\\\end{array}\right|

= √29 

 (\vec{a_2}-\vec{a_1}).(\vec{b_1}×\vec{b_2})=(\hat{i}+\hat{j}+2\hat{k}).(-\hat{i}+2\hat{j}-\hat{k})

= 8

SD = 8/√29 units.

(iv) \frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{-1}  and \vec{r}=\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1}

Solution:

The given equations can be re-written as:

\vec{r}=3\hat{i}+5\hat{j}+7\hat{k}+λ(\hat{i}-2\hat{j}+\hat{k})  and \vec{r}=(-\hat{i}-\hat{j}-\hat{k})+µ(7\hat{i}-6\hat{j}+\hat{k})

(\vec{b_1}×\vec{b_2})=\left|\begin{array}{cc}\hat{i}&\hat{j}&\hat{k}\\1&-2&1\\7&-6&1\\\end{array}\right|

4\hat{i}+6\hat{j}+8\hat{k}

SD = 58/√29 units.

Question 3. By computing the shortest distance determine whether the pairs of lines intersect or not:

(i) \vec{r}=(\hat{i}-\hat{j})+λ(2\hat{i}+\hat{k})  and \vec{r}=2\hat{i}-\hat{j}+µ(\hat{i}+\hat{j}-\hat{k})

Solution:

As we know that the shortest distance between the lines \vec{r}=\vec{a_1}+λ(\vec{b_1})  and \vec{r}=\vec{a_2}+μ(\vec{b_2})  is:



D= |\frac{(\vec{a_2}-\vec{a_1}).(\vec{b_1}×\vec{b_2})}{|\vec{b_1}×\vec{b_2}|}|

(\vec{b_1}×\vec{b_2})=\left|\begin{array}{cc}\hat{i}&\hat{j}&\hat{k}\\2&0&1\\1&1&-1\\\end{array}\right|

-\hat{i}+3\hat{j}+2\hat{k}

(\vec{a_2}-\vec{a_1}).(\vec{b_1}×\vec{b_2})=(\hat{i}+\hat{j}+2\hat{k}).(-\hat{i}+2\hat{j}-\hat{k})

=  –1

|\vec{b_1}×\vec{b_2}|=\sqrt{(-1)^2+(3)^2+(2)^2}

= √14 

⇒ SD = 1/√14 units ≠ 0

Hence the given pair of lines does not intersect.

(ii) \vec{r}=\hat{i}+\hat{j}-\hat{k}+λ(3\hat{i}-\hat{j})  and \vec{r}=(4\hat{i}-\hat{k})+µ(2\hat{i}+3\hat{k})

Solution:

As we know that the shortest distance between the lines \vec{r}=\vec{a_1}+λ(\vec{b_1})  and \vec{r}=\vec{a_2}+μ(\vec{b_2})  is:

D= |\frac{(\vec{a_2}-\vec{a_1}).(\vec{b_1}×\vec{b_2})}{|\vec{b_1}×\vec{b_2}|}|

(\vec{b_1}×\vec{b_2})=\left|\begin{array}{cc}\hat{i}&\hat{j}&\hat{k}\\3&-1&0\\2&0&3\\\end{array}\right|

-3\hat{i}-9\hat{j}+2\hat{k}\vec{r}=\hat{i}+\hat{j}-\hat{k}+λ(3\hat{i}-\hat{j})    \vec{r}=\hat{i}+\hat{j}-\hat{k}+λ(3\hat{i}-\hat{j})

(\vec{a_2}-\vec{a_1}).(\vec{b_1}×\vec{b_2})=(3\hat{i}-\hat{j}).(-3\hat{i}-9\hat{j}+2\hat{k})

= 0

|\vec{b_1}×\vec{b_2}|=\sqrt{(-3)^2+(-9)^2+(2)^2}

= √94 

⇒ SD = 0/√94 units = 0

Hence the given pair of lines are intersecting.



(iii) \frac{x-1}{2}=\frac{y+1}{3}=z  and \frac{x+1}{5}=\frac{y-2}{1};z=2

Solution:

Given lines can be re-written as:

\vec{r}=(\hat{i}-\hat{j})+λ(2\hat{i}+3\hat{j}+\hat{k})  and \vec{r}=(-\hat{i}+2\hat{j}+2\hat{k})+μ(5\hat{i}+\hat{j})

As we know that the shortest distance between the lines \vec{r}=\vec{a_1}+λ(\vec{b_1})  and \vec{r}=\vec{a_2}+μ(\vec{b_2})  is:

D= |\frac{(\vec{a_2}-\vec{a_1}).(\vec{b_1}×\vec{b_2})}{|\vec{b_1}×\vec{b_2}|}|

(\vec{b_1}×\vec{b_2})=\left|\begin{array}{cc}\hat{i}&\hat{j}&\hat{k}\\2&3&1\\5&1&0\\\end{array}\right|

-\hat{i}+5\hat{j}-13\hat{k}

(\vec{a_2}-\vec{a_1}).(\vec{b_1}×\vec{b_2})=(-2\hat{i}+3\hat{j}+2\hat{k}).(-\hat{i}+5\hat{j}-13\hat{k})

= −9

|\vec{b_1}×\vec{b_2}|=\sqrt{(-1)^2+(5)^2+(-13)^2}

= √195 

⇒ SD = 9/√195 units ≠ 0

Hence the given pair of lines does not intersect.

(iv) \frac{x-5}{4}=\frac{y-7}{-5}=\frac{z+3}{-5}  and \frac{x-8}{7}=\frac{y-7}{1}=\frac{z-5}{3}

Solution:

Given lines can be re-written as: 

\vec{r}=(5\hat{i}+7\hat{j}-3\hat{k})+λ(4\hat{i}-5\hat{j}-5\hat{k})   and \vec{r}=(8\hat{i}+7\hat{j}+5\hat{k})+μ(7\hat{i}+\hat{j}+3\hat{k})

As we know that the shortest distance between the lines \vec{r}=\vec{a_1}+λ(\vec{b_1})  and \vec{r}=\vec{a_2}+μ(\vec{b_2})  is:

D= |\frac{(\vec{a_2}-\vec{a_1}).(\vec{b_1}×\vec{b_2})}{|\vec{b_1}×\vec{b_2}|}|

(\vec{b_1}×\vec{b_2})=\left|\begin{array}{cc}\hat{i}&\hat{j}&\hat{k}\\4&5&-5\\7&1&3\\\end{array}\right|

-10\hat{i}-47\hat{j}+39\hat{k}



(\vec{a_2}-\vec{a_1}).(\vec{b_1}×\vec{b_2})=(3\hat{i}+8\hat{k}).(-10\hat{i}-47\hat{j}+39\hat{k})

= 282

⇒ SD = 282/√3 units ≠ 0

Hence the given pair of lines does not intersect.

Question 4. Find the shortest distance between the following:

(i) \vec{r}=(\hat{i}+2\hat{j}+3\hat{k})+λ(\hat{i}-\hat{j}+\hat{k})  and \vec{r}=(2\hat{i}-\hat{j}-\hat{k})+µ(-\hat{i}+\hat{j}-\hat{k})

Solution:

The second given line can be re-written as: \vec{r}=(2\hat{i}-\hat{j}-\hat{k})+µ(\hat{i}-\hat{j}+\hat{k})

As we know that the shortest distance between the lines \vec{r}=\vec{a_1}+λ(\vec{b_1})  and \vec{r}=\vec{a_2}+μ(\vec{b_2})  is:

D= |\frac{(\vec{a_2}-\vec{a_1})×\vec{b}}{\vec{|b|}}|

(\vec{a_2}-\vec{a_1})×\vec{b}=\left|\begin{array}{cc}\hat{i}&\hat{j}&\hat{k}\\1&-3&-4\\1&-1&1\\\end{array}\right|

-7\hat{i}-5\hat{j}+2\hat{k}

 |(\vec{a_2}-\vec{a_1})×\vec{b}|=\sqrt{(-7)^2+(-5)^2+2^2}

\sqrt{78}

\vec{|b|}=\sqrt3

⇒ SD = \frac{\sqrt{78}}{\sqrt{3}} = \sqrt{26}     units.

(ii) \vec{r}=(\hat{i}+\hat{j})+λ(2\hat{i}-\hat{j}+\hat{k})     and \vec{r}=(2\hat{i}-\hat{j}+\hat{k})+µ(4\hat{i}-2\hat{j}+2\hat{k})

Solution:

The second given line can be re-written as: \vec{r}=(2\hat{i}+\hat{j}-\hat{k})+µ'(2\hat{i}-\hat{j}+\hat{k})

As we know that the shortest distance between the lines \vec{r}=\vec{a_1}+λ(\vec{b_1})  and \vec{r}=\vec{a_2}+μ(\vec{b_2})  is:

D= |\frac{(\vec{a_2}-\vec{a_1})×\vec{b}}{\vec{|b|}}|

(\vec{a_2}-\vec{a_1})×\vec{b}=\left|\begin{array}{cc}\hat{i}&\hat{j}&\hat{k}\\1&0&-1\\2&-1&1\\\end{array}\right|

-\hat{i}-3\hat{j}-\hat{k}



⇒ |(\vec{a_2}-\vec{a_1})×\vec{b}|=\sqrt{(-1)^2+(-3)^2+(-1)^2}

= √11 

\vec{|b|}=\sqrt6

⇒ SD = √11/√6 units.

Question 5. Find the equations of the lines joining the following pairs of vertices and then find the shortest distance between the lines:

(i) (0, 0, 0) and (1, 0, 2)       (ii) (1, 3, 0) and (0, 3, 0)

Solution:

Equation of the line passing through the vertices (0, 0, 0) and (1, 0, 2) is given by:

 \vec{r}=(0\hat{i}+0\hat{j}+0\hat{k})+λ(\hat{i}+2\hat{k})

Similarly, the equation of the line passing through the vertices (1, 3, 0) and (0, 3, 0):

\vec{r}=(\hat{i}+3\hat{j}+0\hat{k})+µ(-\hat{i})

As we know that the shortest distance between the lines \vec{r}=\vec{a_1}+λ(\vec{b_1})     and \vec{r}=\vec{a_2}+μ(\vec{b_2})    is:

D= |\frac{(\vec{a_2}-\vec{a_1}).(\vec{b_1}×\vec{b_2})}{|\vec{b_1}×\vec{b_2}|}|

(\vec{b_1}×\vec{b_2})=\left|\begin{array}{cc}\hat{i}&\hat{j}&\hat{k}\\1&0&2\\-1&0&0\\\end{array}\right|

-2\hat{j}

(\vec{a_2}-\vec{a_1}).(\vec{b_1}×\vec{b_2})=(\hat{i}+3\hat{j}).(-2\hat{j})

= −6

|\vec{b_1}×\vec{b_2}|=\sqrt{(-2)^2}

= 2

⇒ SD = |-6/2| = 3 units.

Question 6. Write the vector equations of the following lines and hence find the shortest distance between them:

\frac{x-1}{2}=\frac{y-2}{3}=\frac{z+4}{6};\frac{x-3}{4}=\frac{y-3}{6}=\frac{z+5}{12}

Solution:

The given equations can be written as:



\vec{r}=(\hat{i}+2\hat{j}-4\hat{k})+λ(2\hat{i}+3\hat{j}+6\hat{k})    and \vec{r}=(3\hat{i}+3\hat{j}-5\hat{k})+µ2\hat{i}+3\hat{j}+6\hat{k})

As we know that the shortest distance between the lines \vec{r}=\vec{a_1}+λ(\vec{b_1})  and \vec{r}=\vec{a_2}+μ(\vec{b_2})  is:

D= |\frac{(\vec{a_2}-\vec{a_1})×\vec{b}}{\vec{|b|}}|

(\vec{a_2}-\vec{a_1})×\vec{b}=\left|\begin{array}{cc}\hat{i}&\hat{j}&\hat{k}\\2&1&-1\\2&3&6\\\end{array}\right|

9\hat{i}-14\hat{j}+4\hat{k}

⇒ |(\vec{a_2}-\vec{a_1})×\vec{b}|=\sqrt{(9)^2+(-14)^2+(4)^2}

\sqrt{293}

\vec{|b|}= 7

⇒ SD = √293/7 units.

Question 7. Find the shortest distance between the following:

(i) \vec{r}=\hat{i}+2\hat{j}+\hat{k}+λ(\hat{i}-\hat{j}+\hat{k})   and \vec{r}=(2\hat{i}-\hat{j}-\hat{k})+µ(2\hat{i}+\hat{j}+2\hat{k})

Solution:

As we know that the shortest distance between the lines \vec{r}=\vec{a_1}+λ(\vec{b_1})  and \vec{r}=\vec{a_2}+μ(\vec{b_2})  is:

D= |\frac{(\vec{a_2}-\vec{a_1}).(\vec{b_1}×\vec{b_2})}{|\vec{b_1}×\vec{b_2}|}|

Now, \vec{a_2}-\vec{a_1}=2\hat{i}-\hat{j}-\hat{k}-\hat{i}-2\hat{j}-\hat{k}

\hat{i}-3\hat{j}-2\hat{k}

(\vec{b_1}×\vec{b_2})=\left|\begin{array}{cc}\hat{i}&\hat{j}&\hat{k}\\1&-1&1\\2&1&2\\\end{array}\right|

-3\hat{i}+3\hat{k}

(\vec{a_2}-\vec{a_1}).(\vec{b_1}×\vec{b_2})=9

|\vec{b_1}×\vec{b_2}|=\sqrt{(-3)^2+(-3)^2}

= 3√2 

⇒ SD = 3/√2 units.



(ii) \frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1};\frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}     

Solution:

As we know that the shortest distance between the lines \vec{r}=\vec{a_1}+λ(\vec{b_1})  and \vec{r}=\vec{a_2}+μ(\vec{b_2})  is:

D= |\frac{(\vec{a_2}-\vec{a_1}).(\vec{b_1}×\vec{b_2})}{|\vec{b_1}×\vec{b_2}|}|

Now, \vec{a_2}-\vec{a_1}=4\hat{i}+6\hat{j}+8\hat{k}

(\vec{b_1}×\vec{b_2})=\left|\begin{array}{cc}\hat{i}&\hat{j}&\hat{k}\\7&-6&1\\1&-2&1\\\end{array}\right|

-4\hat{i}-6\hat{k}-8\hat{k}

(\vec{a_2}-\vec{a_1}).(\vec{b_1}×\vec{b_2})=-116

|\vec{b_1}×\vec{b_2}|=\sqrt{(-3)^2+(-3)^2}

= √116 

⇒ SD = 2√29 units.

(iii) \vec{r}=\hat{i}+2\hat{j}+3\hat{k}+λ(\hat{i}-3\hat{j}+2\hat{k})   and \vec{r}=4\hat{i}+5\hat{j}+6\hat{k}+μ(2\hat{i}+3\hat{j}+\hat{k})

Solution:

As we know that the shortest distance between the lines \vec{r}=\vec{a_1}+λ(\vec{b_1})  and \vec{r}=\vec{a_2}+μ(\vec{b_2})  is:

D= |\frac{(\vec{a_2}-\vec{a_1}).(\vec{b_1}×\vec{b_2})}{|\vec{b_1}×\vec{b_2}|}|

Now, \vec{a_2}-\vec{a_1}=-9\hat{i}+3\hat{j}+9\hat{k}

(\vec{b_1}×\vec{b_2})=\left|\begin{array}{cc}\hat{i}&\hat{j}&\hat{k}\\1&-3&2\\2&3&1\\\end{array}\right|

3\hat{i}+3\hat{k}+3\hat{k}

(\vec{a_2}-\vec{a_1}).(\vec{b_1}×\vec{b_2})=9

|\vec{b_1}×\vec{b_2}|=\sqrt{(-9)^2+(3)^2+(9)^2}

= √171 

⇒ SD = 3√19 units.



(iv) \vec{r}=(6\hat{i}+2\hat{j}+2\hat{k})+λ(\hat{i}-2\hat{j}+2\hat{k})   and \vec{r}=-4\hat{i}-\hat{k}+μ(3\hat{i}-2\hat{j}-2\hat{k})

Solution:

As we know that the shortest distance between the lines \vec{r}=\vec{a_1}+λ(\vec{b_1})  and \vec{r}=\vec{a_2}+μ(\vec{b_2})  is:

D= |\frac{(\vec{a_2}-\vec{a_1}).(\vec{b_1}×\vec{b_2})}{|\vec{b_1}×\vec{b_2}|}|

Now, \vec{a_2}-\vec{a_1}=-10\hat{i}-2\hat{j}-3\hat{k}

(\vec{b_1}×\vec{b_2})=\left|\begin{array}{cc}\hat{i}&\hat{j}&\hat{k}\\1&-2&2\\3&-2&-2\\\end{array}\right|

8\hat{i}+8\hat{k}+4\hat{k}

(\vec{a_2}-\vec{a_1}).(\vec{b_1}×\vec{b_2})=108

|\vec{b_1}×\vec{b_2}|=\sqrt{(-9)^2+(3)^2+(9)^2}

= 12

⇒ SD = 9 units.

Question 8. Find the distance between the lines: \vec{r}=(\hat{i}+2\hat{j}-4\hat{k})+λ(2\hat{i}+3\hat{j}+6\hat{k})   and \vec{r}=3\hat{i}+3\hat{j}-5\hat{k}+μ(2\hat{i}+3\hat{j}+6\hat{k})

Solution:

As we know that the shortest distance between the lines \vec{r}=\vec{a_1}+λ(\vec{b_1})  and \vec{r}=\vec{a_2}+μ(\vec{b_2})  is:

D= |\frac{(\vec{a_2}-\vec{a_1})×\vec{b}}{\vec{|b|}}|

(\vec{a_2}-\vec{a_1})×\vec{b}=\left|\begin{array}{cc}\hat{i}&\hat{j}&\hat{k}\\2&1&-1\\2&3&6\\\end{array}\right|

9\hat{i}-14\hat{j}+4\hat{k}

⇒  |(\vec{a_2}-\vec{a_1})×\vec{b}|=\sqrt{(9)^2+(-14)^2+(4)^2}

= √293  

\vec{|b|}=7

⇒ SD = √293/7 units.




My Personal Notes arrow_drop_up
Recommended Articles
Page :