Open In App

Class 12 RD Sharma Solutions – Chapter 19 Indefinite Integrals – Exercise 19.24

Last Updated : 29 Apr, 2022
Improve
Improve
Like Article
Like
Save
Share
Report

Question 1. ∫dx/(1-cotx)

Solution:

We have,

Let I=∫dx/(1-cotx)

=∫\frac{dx}{1-\frac{cosx}{sinx}}

=∫sinx.dx/(sinx-cosx)

=(1/2)∫2sinx.dx/(sinx-cosx)

=\frac{1}{2}∫\frac{sinx+cosx+sinx-cosx}{sinx-cosx}dx

=(1/2)∫[(sinx+cosx)dx/(sinx-cosx)]+(1/2)∫dx

Let, sinx-cosx=z

Differentiating both sides we have

(cosx+sinx)dx=dz

=(1/2)Log|sinx-cosx|+(x/2)+C  (Here C is integration constant)

Question 2. ∫dx/(1-tanx)

Solution:

We have,

Let I=∫dx/(1-tanx)

=∫\frac{dx}{1-\frac{sinx}{cosx}}

=∫cosx.dx/(cosx-sinx)

=(1/2)∫2cosx.dx/(cosx-sinx)

=\frac{1}{2}∫\frac{cosx+sinx+cosx-sinx}{cosx-sinx}dx

=(1/2)∫[(cosx+sinx)dx/(cosx-sinx)]+(1/2)∫dx

Let, cosx-sinx=z

Differentiating both sides we have

-(sinx+cosx)dx=dz

(sinx+cosx)dx=-dz

=(x/2)-(1/2)Log|cosx-sinx|+C  (Here C is integration constant)

Question 3. ∫[(3+2cosx+4sinx)/(2sinx+cosx+3)]dx

Solution:

We have,

Let I=∫[(3+2cosx+4sinx)/(2sinx+cosx+3)]dx

Now substituting numerator

3+2cosx+4sinx=A(d/dx)(2sinx+cosx+3)+B(2sinx+cosx+3)+C

3+2cosx+4sinx=A(2cosx-sinx)+B(2sinx+cosx+3)+C

3+2cosx+4sinx=2Acosx-Asinx+2Bsinx+Bcosx+3B+C

3+2cosx+4sinx=(3B+C)+(2A+B)cosx+(2B-A)sinx

(3B+C)=3                         (i)

(2A+B)=2                        (ii)

(2B-A)=4                        (iii)

On solving above equations,

A=0 ,B=2 ,C=-3

I=∫\frac{2(2sinx+cosx+3)-3}{2sinx+cosx+3)}

=2∫dx-∫3/(2sinx+cosx+3)

=I1-I2

I1=2∫dx

=2x

I2=∫3/(2sinx+cosx+3)

Substituting cosx=\frac{1-tan^2\frac{x}{2}}{1+tan^2\frac{x}{2}}         and sinx=\frac{2tan^2\frac{x}{2}}{1+tan^2\frac{x}{2}}

=3∫\frac{dx}{2×\frac{2tan^2\frac{x}{2}}{1+tan^2\frac{x}{2}}+\frac{1-tan^2\frac{x}{2}}{1+tan^2\frac{x}{2}}+3}

=3∫\frac{(1+tan^2\frac{x}{2})}{4tan\frac{x}{2}+1-tan^2\frac{x}{2}+3(1+tan^2\frac{x}{2})}

=\frac{3}{2}∫\frac{sec^2\frac{x}{2}}{tan^2\frac{x}{2}+2tan\frac{x}{2}+2}

Let, tan(x/2)=z

Differentiating both sides,

(1/2)sec2(x/2)dx=dz

=3∫dz/(z2+2z+2)

=3∫dz/(z2+2z+1+1)

=3∫dz/{(z+1)2+12}

=3tan-1(z+1)

Putting the value of z

=3tan-1(tanx/2+1)

I2=3tan-1(tanx/2+1)

I=I1-I2

=2x-3tan-1(tanx/2+1)+C    (Here C is integration constant)

Question 4. ∫dx/(p+qtanx)

Solution:

We have,

Let I=∫dx/(p+qtanx)

=∫[cosx/(pcosx+qsinx)]dx

Now substituting numerator

cosx=A(d/dx)(pcosx+qsinx)+B(pcosx+qsinx)+C

cosx=A(-psinx+qcosx)+B(pcosx+qsinx)+C

cosx=sinx(Bq-Ap)+cosx(Bp+Aq)+C

On comparing both sides,

C=0,

Bp+Aq=1,

Bq-Ap=0,

Solving above equation,

A=q/(p2+q2) and B=p/(p2+q2

I=∫\frac{\frac{q}{p^2+q^2}(-psinx+qcosx)+\frac{p}{p^2+q^2}(pcosx+qsinx)}{pcosx+qsinx}      [Tex]I=∫\frac{\frac{q}{p^2+q^2}(-psinx+qcosx)+\frac{p}{p^2+q^2}(pcosx+qsinx)}{pcosx+qsinx}dx[/Tex]

I=I1+I2

I1=∫\frac{\frac{q}{p^2+q^2}(-psinx+qcosx)}{pcosx+qsinx}dx

=q/(p2+q2)log|pcosx+qsinx|

I2=∫\frac{\frac{p}{p^2+q^2}(pcosx+qsinx)}{pcosx+qsinx}dx

=px/(p2+q2)

I=q/(p2+q2)log|pcosx+qsinx|+px/(p2+q2)+C     (Here C is integration constant)

Question 5. ∫[(5cosx+6)/(2cosx+sinx+3)]dx

Solution:

We have,

Let I=∫[(5cosx+6)/(2cosx+sinx+3)]dx

Now substituting numerator

5cosx+6=A(d/dx)(2cosx+sinx+3)+B(2cosx+sinx+3)+C

5cosx+6=A(-2sinx+cosx)+B(2cosx+sinx+3)+C

5cosx+6=sinx(B-2A)+cosx(2B+A)+3B+C

On comparing both sides,

3B+C=6,

2B+A=5,

B-2A=0,

Solving above equation,

A=1, B=2 and c=0

I=∫\frac{(-2sinx+cosx)+2(2cosx+sinx+3)}{2cosx+sinx+3}dx

I=I1+I2

I1=∫[(-2sinx+cosx)/(2cosx+sinx+3)]dx

I1=log|2cosx+sinx+3|

I2=2∫dx

I2=2x

I=log|2cosx+sinx+3|+2x+C      (Here C is integration constant)

Question 6. ∫[(2sinx+3cosx)/(3sinx+4cosx)]dx

Solution:

We have,

Let I=∫[(2sinx+3cosx)/(3sinx+4cosx)]dx

Now substituting numerator

2sinx+3cosx=A(d/dx)(3sinx+4cosx)+B(3sinx+4cosx)+C

2sinx+3cosx=A(3cosx-4sinx)+B(3sinx+4cosx)+C

2sinx+3cosx=sinx(3B-4A)+cosx(4B+3A)+3B+C

On comparing both sides,

3B-4A=2,

4B+3A=3,

Solving above equation,

A=1/25, B=18/25 and C=0

I=∫\frac{\frac{1}{25}(3cosx-4sinx)+\frac{18}{25}(3sinx+4cosx)}{(3sinx+4cosx)}dx

I=I1+I2

I1=(1/25)∫[(3cosx-4sinx)/(3sinx+4cosx)]dx

I1=(1/25)log|3sinx+4cosx|

I2=(18/25)∫dx

I2=(18x/25)

I=(1/25)log|3sinx+4cosx|+(18x/25)+C      (Here C is integration constant)

Question 7. ∫dx/(3+4cotx)

Solution:

We have,

Let I=∫dx/(3+4cotx)

=∫[(sinx)/(3sinx+4cosx)]dx

Now substituting numerator

sinx=A(d/dx)(3sinx+4cosx)+B(3sinx+4cosx)+C

sinx=A(3cosx-4sinx)+B(3sinx+4cosx)+C

sinx=sinx(3B-4A)+cosx(4B+3A)+3B+C

On comparing both sides,

3B-4A=1,

4B+3A=0,

Solving above equation,

A=-4/25, B=3/25 and C=0

I=∫\frac{\frac{-4}{25}(3cosx-4sinx)+\frac{3}{25}(3sinx+4cosx)}{(3sinx+4cosx)}dx

I=I1+I2

I1=(-4/25)∫[(3cosx-4sinx)/(3sinx+4cosx)]dx

I1=(-4/25)log|3sinx+4cosx|

I2=(3/25)∫dx

I2=(3x/25)

I=(3x/25)-(4/25)log|3sinx+4cosx|+(18x/25)+C      (Here C is integration constant)

Question 8. ∫[(2tanx+3)/(3tanx+4)]dx

Solution:

We have,

Let I=∫[(2tanx+3)/(3tanx+4)]dx

=∫[(2sinx+3cosx)/(3sinx+4cosx)]dx

Now substituting numerator

2sinx+3cosx=A(d/dx)(3sinx+4cosx)+B(3sinx+4cosx)+C

2sinx+3cosx=A(3cosx-4sinx)+B(3sinx+4cosx)+C

2sinx+3cosx=sinx(3B-4A)+cosx(4B+3A)+C

On comparing both sides,

3B-4A=2,

4B+3A=3,

Solving above equation,

A=1/25, B=18/25 and C=0

I=∫\frac{\frac{1}{25}(3cosx-4sinx)+\frac{18}{25}(3sinx+4cosx)}{(3sinx+4cosx)}dx

I=I1+I2

I1=(1/25)∫[(3cosx-4sinx)/(3sinx+4cosx)]dx

I1=(1/25)log|3sinx+4cosx|

I2=(18/25)∫dx

I2=(18x/25)

I=(1/25)log|3sinx+4cosx|+(18x/25)+C      (Here C is integration constant)

Question 9. ∫dx/(4+3tanx)

Solution:

We have,

Let I=∫dx/(4+3tanx)

=∫[(cosx)/(4cosx+3sinx)]dx

Now substituting numerator

cosx=A(d/dx)(3sinx+4cosx)+B(3sinx+4cosx)+C

cosx=A(3cosx-4sinx)+B(3sinx+4cosx)+C

cosx=sinx(3B-4A)+cosx(4B+3A)+C

On comparing both sides,

3B-4A=0,

4B+3A=3,

Solving above equation,

A=3/25, B=4/25 and C=0

I=∫\frac{\frac{3}{25}(3cosx-4sinx)+\frac{4}{25}(3sinx+4cosx)}{(3sinx+4cosx)}dx

I=I1+I2

I1=(3/25)∫[(3cosx-4sinx)/(3sinx+4cosx)]dx

I1=(3/25)log|3sinx+4cosx|

I2=(4/25)∫dx

I2=(4x/25)

I=(3/25)log|3sinx+4cosx|+(4x/25)+C      (Here C is integration constant)

Question 10. ∫[(8cotx+1)/(3cotx+2)]dx

Solution:

We have,

Let I=∫[(8cotx+1)/(3cotx+2)]dx

=∫[(8cosx+sinx)/(3cosx+2sinx)]dx

Now substituting numerator

8cosx+sinx=A(d/dx)(3cosx+2sinx)+B(3cosx+2sinx)+C

8cosx+sinx=A(-3sinx+2cosx)+B(3cosx+2sinx)+C

8cosx+sinx=sinx(2B-3A)+cosx(3B+2A)+C

On comparing both sides,

2B-3A=1,

3B+2A=3,

Solving the above equation,

A=1, B=2 and C=0

I=∫\frac{(-3sinx+2cosx)+2(3cosx+2sinx)}{(3cosx+2sinx)}dx

I=I1+I2

I1=∫[(-3sinx+2cosx)/(3cosx+2sinx)]dx

I1=log|3cosx+2sinx|

I2=2∫dx

I2=2x

I=log|3cosx+2sinx|+2x+C      (Here C is integration constant)

Question 11. ∫[(4sinx+5cosx)/(5sinx+4cosx)]dx

Solution:

We have,

Let I=∫[(4sinx+5cosx)/(5sinx+4cosx)]dx

Now substituting numerator

4sinx+5cosx=A(d/dx)(5sinx+4cosx)+B(5sinx+4cosx)+C

4sinx+5cosx=A(5cosx-4sinx)+B(5sinx+4cosx)+C

4sinx+5cosx=sinx(5B-4A)+cosx(4B+5A)+C

On comparing both sides,

5B-4A=4,

4B+5A=5,

Solving the above equation,

A=9/41, B=40/41 and C=0

I=∫\frac{\frac{9}{41}(5cosx-4sinx)+\frac{40}{41}(5sinx+4cosx)}{(5sinx+4cosx)}dx

I=I1+I2

I1=(9/41)∫[(5cosx-4sinx)/(5sinx+4cosx)]dx

I1=(9/41)log|5sinx+4cosx|

I2=(40/41)∫dx

I2=(40x/41)

I=(9/41)log|5sinx+4cosx|+(40x/41)+C      (Here C is integration constant)



Previous Article
Next Article

Similar Reads

Class 12 RD Sharma Solutions - Chapter 19 Indefinite Integrals - Exercise 19.13 | Set 1
Question 1. Evaluate ∫ x/ √x4+a4 dx Solution: Let us assume I = ∫ x/ √x4+a4 dx = ∫ x/ √(x2)2+(a2)2 dx (i) Put x2 = t 2x dx = dt x dx = dt/2 Put the above value in eq. (i) = 1/2 ∫ dt/√t2 +(a2)2 Integrate the above eq. then, we get = 1/2 log |t+ √t2+(a2)2| + c [since ∫ 1/√x2+a2 dx =log|x +√x2+a2| + c] = 1/2 log |x2+ √(x2)2+(a2)2| + c Hence, I = 1/2 l
4 min read
Class 12 RD Sharma Solutions - Chapter 19 Indefinite Integrals - Exercise 19.22
Question 1. Evaluate the integral:[Tex]\int\frac{1}{4cos^2x+9sin^2x}dx[/Tex] Solution: Let [Tex]I=\int\frac{1}{4cos^2x+9sin^2x}dx[/Tex] On dividing numerator and denominator by cos2x, we get [Tex]=\int\frac{\frac{1}{cos^2x}}{4+9tan^2x}dx\\ I=\int\frac{sec^2x}{4+9tan^2x}dx\\[/Tex] Let us considered tan x = t So, sec2x dx = dt [Tex]I=\int\frac{dt}{4+
3 min read
Class 12 RD Sharma Solutions - Chapter 19 Indefinite Integrals - Exercise 19.2 | Set 2
Question 25. Evaluate ∫(tan⁡x + cot⁡x)2 dx Solution: We have, ∫(tan⁡x + cot⁡x)2 dx By using formula (x + y)2 = x2 + y2 + 2xy We get, ∫(tan2x + cot2⁡x + 2tan⁡x cot⁡x)dx = ∫ (sec2⁡x - 1 + cosec2x - 1 + ((2 × 1)/cot⁡x) × cot⁡x)dx = ∫ (sec2⁡x + cosec2⁡x)dx = ∫sec2xdx + ∫cosec2⁡xdx = tan⁡x - cot⁡x + c Question 26. Evaluate ∫(1 - cos⁡2x)/(1 + cos⁡2x) dx
9 min read
Class 12 RD Sharma Solutions- Chapter 19 Indefinite Integrals - Exercise 19.6
Question 1: ∫ sin2(2x+5) dx Solution: sin2(2x+5)= (1-cos2(2x+5)/)2 = (1-cos(4x+10))/2 ⇒ ∫sin2(2x+5)dx= ∫(1-cos(4x+10))/2 dx = 1/2 ∫1 dx - 1/2∫cos(4x+10) dx = x/2 - 1/2 ((sin(4x+10))/4)+C = x/2 - sin(4x+10)/8 + C Question 2: ∫sin3(2x+1) dx Solution: We need to evaluate ∫sin3(2x+1)dx By using the formula : sin3A = -4sin3A + 3sinA Therefore, sin3(2x+1
2 min read
Class 12 RD Sharma Solutions- Chapter 19 Indefinite Integrals - Exercise 19.7
Integrate the following integrals:Question 1. ∫sin4x cos7x dx Solution: Let I= [Tex]\int \sin4x\cos7x\,dx[/Tex] We know, [Tex]2\sin A \cos B= \sin(A+B)+\sin(A-B)[/Tex] Applying this formula to the given question we get I=[Tex]\int \frac 1 2(\sin(4x+7x)+\sin(4x-7x))\,dx[/Tex] = [Tex]\int \frac 1 2(\sin11x+\sin(-3x)\,dx [/Tex] =[Tex]\int\frac 1 2 (\s
2 min read
Class 12 RD Sharma Solutions- Chapter 19 Indefinite Integrals - Exercise 19.12
Question 1. ∫sin4x cos3x dx Solution: Let I = ∫ sin4x cos3x dx -(i) Let sinx = t On differentiating with respect to x: cosx = dt/dx cosx dx = dt dx = dt/cosx Putting value of dx and sinx in equation (i): I = ∫ t4 cosxdt/cosx I = ∫ t4 cos2 x dt I = ∫ t4 (1 - sin2 x) dt I = ∫ t4 (1 - t2) dt I = ∫ (t4- t2) dt I = t5/5 - t7/7 + c I = sin5/5 - sin7/7 +
5 min read
Class 12 RD Sharma Solutions- Chapter 19 Indefinite Integrals - Exercise 19.26 | Set 1
Evaluate the following integrals.Question 1. ∫(ex(cosx -sinx))dx Solution: Given expression is∫(excosx)-(exsinx)dx=∫(excosx) dx -∫(exsinx)dx=ex(cosx )-∫(exd(cosx)/dx-∫exsinx dx=ex(cosx )+∫exsinx dx-∫exsinx dx=ex(cosx) + c Question 2. ∫ex(x-2+2x-3)dx Solution: Given expression is∫ex(x-2+2x-3)dx=∫exx-2dx +∫ex(2x-3)dx=exx-2-∫ex(d(x-2)/dx)dx +2∫exx-3dx
1 min read
Class 12 RD Sharma Solutions - Chapter 19 Indefinite Integrals - Exercise 19.1
Question 1. Integrate the following integrals with respect to x:(i) ∫ x4 dx Solution: ∫ x4 dx = x4+1/(4+1) + Constant = x5/5 + C (ii) ∫ x5/4 dx Solution: ∫ x5/4 dx = x5/4 + 1/(5/4 +1) + Constant = 4/9 x9/4 + C (iii) ∫ 1/x5 dx Solution: ∫ 1/x5 dx = ∫ x-5 dx = x-5+1/(-5+1) + Constant = x-4/(-4)+ C = -1/(4x4) + C (iv) ∫ 1/x3/2 dx Solution: ∫ x-3/2 dx
3 min read
Class 12 RD Sharma Solutions - Chapter 19 Indefinite Integrals - Exercise 19.28
Question 1. Find [Tex]\int\sqrt{3+2x-x^2}dx[/Tex] Solution: [Tex]\int\sqrt{3+2x+x^2}dx=\int\sqrt{4-(x-1)^2}dx\\[/Tex] Let considered x - 1 = t, so that dx = dt Thus, [Tex]\int\sqrt{3+2x+x^2}dx\\=\int\sqrt{4-t^2}dt\\ =\frac{1}{2}t\sqrt{4-t^2}+\frac{4}{2}sin^{-1}\left(\frac{t}{2}\right)+C\\ =\frac{1}{2}(x-1)\sqrt{3+2x-x^2}+2sin^{-1}\left(\frac{x-1}{2
2 min read
Class 12 RD Sharma Solutions - Chapter 19 Indefinite Integrals - Exercise 19.3 | Set 1
Question 1. Integrate ∫(2x - 3)5 + √3x + 2 dxSolution: Let I = ∫(2x - 3)5 + √3x + 2 dx -(1) On integrating the equation(1), we get = [Tex]\frac{(2x - 3)^6}{(2 × 6)} + \frac{(3x + 2)^{\frac{3}{2}}}{3×\frac{3}{2}} + c[/Tex] = [Tex]\frac{(2x - 3)^6}{12} + \frac{2(3x + 2)^{\frac{3}{2}}}{9} + c[/Tex] Therefore, I = [Tex]\frac{(2x - 3)^6}{12} + \frac{2(3
4 min read