Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Class 12 RD Sharma Solutions – Chapter 19 Indefinite Integrals – Exercise 19.28

  • Last Updated : 11 Feb, 2021

Question 1. Find \int\sqrt{3+2x-x^2}dx

Solution:

\int\sqrt{3+2x+x^2}dx=\int\sqrt{4-(x-1)^2}dx\\

Attention reader! All those who say programming isn't for kids, just haven't met the right mentors yet. Join the  Demo Class for First Step to Coding Coursespecifically designed for students of class 8 to 12. 

The students will get to learn more about the world of programming in these free classes which will definitely help them in making a wise career choice in the future.

Let considered x – 1 = t, 



so that dx = dt

Thus, \int\sqrt{3+2x+x^2}dx\\=\int\sqrt{4-t^2}dt\\ =\frac{1}{2}t\sqrt{4-t^2}+\frac{4}{2}sin^{-1}\left(\frac{t}{2}\right)+C\\ =\frac{1}{2}(x-1)\sqrt{3+2x-x^2}+2sin^{-1}\left(\frac{x-1}{2}\right)+C  

Question 2. Evaluate \int\sqrt{x^2+x+1}dx

Solution:

Let I = \int\sqrt{x^2+x+1}dx\\ =\int\sqrt{x^2+x+\frac{1}{4}+\frac{3}{4}}dx\\ =\int\sqrt{\left(x+\frac{1}{2}^2\right)+\left(\frac{\sqrt{3}}{2}\right)^2}dx\\ =\frac{\left(x+\frac{1}{2}\right)}{2}\sqrt{\left(x+\frac{1}{2}\right)^2+\left(\frac{\sqrt{3}}{2}\right)^2}+\frac{\left(\frac{\sqrt{3}}{2}\right)^2}{2}.log\left|\left(x+\frac{1}{2}\right)+\sqrt{\left(x+\frac{1}{2}\right)^2+\left(\frac{\sqrt{3}}{2}\right)^2}\right|+c\\ =\left(\frac{2x+1}{4}\right)\sqrt{x^2+x+1}+\frac{3}{8}log\left|\left(\frac{2x+1}{2}\right)+\frac{1}{2}\sqrt{x^2+x+1}\right|+c\\ I=\left(\frac{2x+1}{4}\right)\sqrt{x^2+x+1}+\frac{3}{8}log\left|{2x+1}+\sqrt{x^2+x+1}\right|+c\\

Question 3. Evaluate \int\sqrt{x-x^2}dx

Solution:

I = \int\sqrt{x-x^2}dx\\ \int\sqrt{\frac{1}{4}-\frac{1}{4}+x-x^2}dx\ \ \ \ \ \ -(Add\ and\ subtract \frac{1}{4})\\ \\ \int\sqrt{\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}-x\right)^2}dx\\ = -\left(\frac{1-2x}{4}\right)\sqrt{\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}-x\right)^2}-\frac{\left(\frac{1}{2}\right)^2}{2}sin^{-1}\left(\frac{\frac{1-x}{2}}{\frac{1}{2}}\right)+c\\

Hence, I=\left(\frac{2x-1}{4}\right)\sqrt{x-x^2}+\frac{1}{8}sin^{-1}(2x-1)+c

Question 4. Evaluate \int\sqrt{1+x-2x^2}dx

Solution:



Let I = \int\sqrt{1+x-2x^2}dx\\ =\sqrt{2}\int\sqrt{\frac{1}{2}+\frac{x}{2}-x^2}dx\\ =\sqrt{2}\int\sqrt{\frac{9}{16}+-\left(\frac{1}{16}-\frac{x}{2}+x\right)^2}dx\\ =\sqrt{2}\int\sqrt{\left(\frac{3}{4}\right)^2-\left(x-\frac{1}{4}\right)^2}dx\\ =\sqrt{2}\left\{\frac{\left(x-\frac{1}{4}\right)}{2}\sqrt{\frac{1}{2}+\frac{x}{2}-x^2}+\frac{9}{32}sin^{-1}\left(\frac{x-\frac{1}{4}}{\frac{3}{4}}\right)\right\}+c\\

Therefore, I = \frac{1}{8}(4x-1)\sqrt{1+x-2x^2}+\frac{9\sqrt{2}}{32}sin^{-1}\left(\frac{4x-1}{3}\right)+c

Question 5. \int cosx\sqrt{4-sin^2x}dx

Solution:

I = \int cosx\sqrt{4-sin^2x}dx

Let us considered sinx = t

So, on differentiating, we get

cosx dx = dt

I = \int\sqrt{4-t^2}dt\\ =\int\sqrt{2^2-t^2}dt\\ =\frac{t}{2}\sqrt{2^2-t^2}+\frac{4}{2}sin^{-1}\frac{t}{2}+c\\

Therefore, I = \frac{1}{2}sinx\sqrt{4-sin^2x}+2sin^{-1}\left(\frac{sinx}{2}\right)+c

Question 6. Evaluate \int e^x\sqrt{e^{2x}+1}dx

Solution:



I = \int e^x\sqrt{e^{2x}+1}dx

Let us considered ex = t

So, on differentiating, we get

exdx = dt

Therefore, I = \int\sqrt{t^2+1^2}dt\\ =\frac{t}{2}\sqrt{t^2+1^2}+\frac{1}{2}log\left|t+\sqrt{t^2+1}\right|+c

Hence, I = \frac{e^x}{2}\sqrt{e^{2x}+1}+\frac{1}{2}log\left|e^x+\sqrt{e^{2x}+1}\right|+c

Question 7. Evaluate \int\sqrt{9-x^2}dx

Solution:

I = \int\sqrt{3^2-x^2}

We already have, 

\int\sqrt{a^2-x^2}dx=\frac{x}{2}\sqrt{a^2-x^2}+\frac{a^2}{2}sin^{-1}\frac{x}{a}+c



Therefore, I = \frac{x}{2}\sqrt{9-x^2}+\frac{9}{2}sin^{-1}\frac{x}{3}+c

Question 8. Evaluate \int\sqrt{16x^2+25}dx

Solution:

Let us assume I = \int\sqrt{16x^2+25}dx

=\int\sqrt{(4x)^2+5^2}dx\\ =4\int\sqrt{x^2+\left(\frac{5}{4}\right)^2}dx\\ =4\left\{\frac{x}{2}\sqrt{x^2+\left(\frac{5}{4}\right)^2}+{\frac{\left(\frac{5}{4}\right)^2}{2}}log\left|x+\sqrt{x^2+\left(\frac{5}{4}\right)^2}\right|\right\}+c\\

Therefore, I = 2x\sqrt{x^2+\frac{25}{16}}+\frac{25}{8}log\left|x+\sqrt{x^2+\frac{25}{16}}\right|+c\\

Question 9. Evaluate \int\sqrt{4x^2-5}dx

Solution:

Let us assume I = \int\sqrt{4x^2-5}dx

=2\int\sqrt{x^2-\left(\frac{\sqrt5}{2}\right)}dx\\ =2\left\{\frac{x}{2}\sqrt{x^2-\frac{5}{4}}-\frac{5}{8}log\left|x+\sqrt{x^2-\frac{5}{4}}\right|+c\right\}

Therefore, I = x\sqrt{x^2-\frac{5}{4}}-\frac{5}{4}log\left|x+\sqrt{x^2-\frac{5}{4}}\right|+c

Question 10. Evaluate \int\sqrt{2x^2+3x+4}dx

Solution:



Let us assume I = \int\sqrt{2x^2+3x+4}dx

=\sqrt{2}\int\sqrt{x^2+\frac{3}{2}x+2}dx\\ =\sqrt{2}\int\sqrt{x^2+\frac{3}{2}x+\frac{9}{16}+\frac{23}{16}}dx\\ =\sqrt{2}\int\sqrt{\left(x+\frac{3}{4}\right)^2+\left(\frac{\sqrt{23}}{4}\right)^2}dx\\ =\sqrt{2}\left\{\frac{\left(x+\frac{3}{4}\right)}{2}\sqrt{x^2+\frac{3}{2}x+2}+\frac{23}{32}.log\left|\left(x+\frac{3}{4}\right)+\sqrt{x^2+\frac{3}{2}x+2}\right|+c\right\}

Therefore, I = \frac{4x+3}{8}\sqrt{2x^2+3x+4}+\frac{23\sqrt{2}}{32}.log\left|\left(x+\frac{3}{4}\right)+\sqrt{x^2+\frac{3}{2}x+2}\right|+c

Question 11. Evaluate \int\sqrt{3-2x-2x^2}dx

Solution:

Let us assume I = \int\sqrt{3-2x-2x^2}dx

=\sqrt{2}\int\sqrt{\frac{3}{2}-x-x^2}dx\\ =\sqrt{2}\int\sqrt{\frac{7}{4}-\left(\frac{1}{4}+x+x^2\right)}dx\ \ \ \ -(Add\ and\ subtract\ \frac{1}{4})\\ =\sqrt{2}\int\sqrt{\left(\frac{\sqrt{7}}{2}\right)^2-\left(x+\frac{1}{2}\right)^2}dx\\ =\sqrt{2}\left\{\frac{x+\frac{1}{2}}{2}\sqrt{\frac{3}{2}-x+x^2}+\frac{7}{8}sin^{-1}\left(\frac{x+\frac{1}{2}}{\frac{\sqrt{7}}{2}}\right)+c\right\}

Therefore, I = \frac{2x+1}{4}\sqrt{3-2x-2x^2}+\frac{7\sqrt{2}}{8}sin^{-1}\left(\frac{2x+1}{\sqrt{7}}\right)+c

Question 12. Evaluate \int x\sqrt{x^4+1}dx

Solution:

Let us assume x2 = t

On differentiating we get



2x dx = dt

Therefore, I = \frac{1}{2}\int\sqrt{t^2+1^2}dt\\ =\frac{1}{2}\left\{\frac{t}{2}\sqrt{t^2+1}+\frac{1}{2}log\left|t+\sqrt{t^2+1}\right|\right\}+c\\

Hence, I = \frac{1}{2}\left\{\frac{x^2}{2}\sqrt{x^4+1}+\frac{1}{2}log\left|x^2+\sqrt{x^4+1}\right|\right\}+c\\

Question 13. Evaluate \int x^2\sqrt{a^6-x^6}dx

Solution:

I = \int x^2\sqrt{a^6-x^6}dx

Let us considered x3 = t

So, on differentiating, we get

3x2dx = dt

Therefore, I = \frac{1}{3}\int\sqrt{a^6-t^2}dt\\ = \frac{1}{3}\left\{\frac{t}{2}\sqrt{a^6-t^2}+\frac{a^6}{2}sin^{-1}\left(\frac{t}{a^3}\right)\right\}+c\\

Hence, I =  \frac{x^3}{6}\sqrt{a^6-x^6}+\frac{a^6}{6}sin^{-1}\left(\frac{x^3}{a^3}\right)+c



Question 14. Evaluate \int\sqrt{\frac{16+(logx)^2}{x}}dx

Solution:

I = \int\sqrt{\frac{16+(logx)^2}{x}}dx

Let us considered logx = t

So, on differentiating, we get

1/x dx = dt 

Therefore, I = \int\sqrt{16+t^2}dt\\ =\int\sqrt{4^2+t^2}dt\\ =\frac{t}{2}\sqrt{16+t^2}+\frac{16}{2}log\left|t+\sqrt{16+t^2}\right|

Hence, I = \frac{logx}{2}\sqrt{16+(logx)^2}+8log\left|logx+\sqrt{16+(logx)^2}\right|+c

Question 15. Evaluate \int\sqrt{2ax-x^2}dx

Solution:

I = \int\sqrt{2ax-x^2}dx

=\int\sqrt{a^2-(a^2-ax+x^2)}dx\ \ \ \ \ -(Add\ and\ subtract\ a^2)\\ =\int\sqrt{a^2-(a-x)^2}dx\\ =\int\sqrt{a^2-(x-a)^2}dx\\ =\frac{(x-a)}{2}\sqrt{2ax-x^2}+\frac{a^2}{2}sin^{-1}\left(\frac{x-a}{a}\right)+c

Therefore, I = \frac{1}{2}(x-a)\sqrt{2ax-x^2}+\frac{a^2}{2}sin^{-1}\left(\frac{x-a}{a}\right)+c

Question 16. Evaluate \int\sqrt{3-x^2}dx

Solution:

Let I = \int\sqrt{3-x^2}dx

=\int\sqrt{(\sqrt{3})^2-x^2}dx

I = \frac{x}{2}\sqrt{3-x^2}+\frac{3}{2}sin^{-1}\left(\frac{x}{\sqrt{3}}\right)+c




My Personal Notes arrow_drop_up
Recommended Articles
Page :