CBSE Class 11 Maths Revision Notes have been designed in the most basic and detailed format possible, covering nearly all domains such as differential calculus, arithmetic, trigonometry, and coordinate geometry. We know how hard it gets when you shift to an altogether new grade where subjects are no longer the same, especially with maths.
Our CBSE Class 11 Maths NCERT Notes are curated for students who want to achieve high marks in their 11th grade and competitive exams such as JEE Mains and JEE Advanced. These Class 11 Maths NCERT notes provided by GeeksforGeeks would assist students in easily grasping every idea and properly revising before the exams. These notes were written by subject experts which has a significant benefit in that students would be well qualified to answer any kind of question that could be posed in the exams.
Our experts developed these notes, which are available for free at GeeksforGeeks. The CBSE Class 11 Maths Notes include all of the important chapters from the improved NCERT textbooks, including Trigonometric Functions, Relation and Functions, Principles of mathematical induction, and more.
Other important topics covered in the Class 11 Maths curriculum are Complex Numbers and Quadratic Equations, Linear Inequalities, Limits and Derivatives, Statistics and Probability, etc. NCERT Solutions for Class 11 and RD Sharma Solutions for Class 11 are also covered by our experts for Class 11 Students.
This doesn’t end here GeeksforGeeks also covered some important resources for all the students studying maths are 1500+ Most Asked Questions of Mathematics, Chapterwise Important Formulas for Class 11, and many more.
These subjectspecific revision notes include all of the essential topics that are necessary for CBSE Board Class 11 students. Simplify your mathematics problems with more uptodate math revision notes available for free on the internet.
CBSE Class 11 Maths Notes Chapters List (2023)
All the Chapters covered in Class 11 Maths NCERT textbooks are listed below. Here is the detailed chapterwise information about the Class 11 Maths syllabus provided by CBSE. Additionally, this also contains all the major topics that have been covered in Class 11 Maths NCERT textbooks and the Class 11 CBSE Maths Syllabus
Deleted Chapters from NCERT Class 11th Maths Textbook (20232024):
The most recent CBSE Class 11th Mathematics syllabus has been changed and reduced by 30% for the upcoming annual assessment in the academic year 20232024, you can find the list of all deleted chapters in the table below:
Topics Deleted from NCERT Class 11 Maths Textbook 202324  

Chapter Name  Deleted Topics 
Sets  Power Sets Practical Problems on Union and Intersection of Two Sets 
Trigonometric Functions  Trigonometric Equations Proofs and Simple Applications of Sine and Cosine Formula 
Complex Number  Polar Representation of Complex Number Quadratic Equations Square Root of Complex Number 
Principle of Mathematical Induction  Full Chapter Deleted 
Mathematical Reasoning  Full Chapter Deleted 
Linear Inequalities  1. Graphical Solutions of Linear Inequalities in Two Variables. 2. Solution of System of Linear Inequalities in Two Variables. 
Binomial Theorem  General Middle Terms 
Sequence and Series  1. Arithmetic Progression (AP) 2. Sum to n Terms of Special Series 
Straight Lines  1. Collinearity of Three Points 2. General Equation of a line 3. Equation of Family of lines passing through the point of intersections of two lines. 4. Shifting of Origin 
Conic Sections  Special Cases of Ellipse 
Introduction to ThreeDimensional Geometry  Section Formula 
Statistics  Analysis of Frequency Distribution 
Probability  1. Introduction 2. Random Experiment 
Chapter 1: Sets
Let’s start with Class 11 Maths Sets Notes. The chapter explains the concept of sets along with their representation. The Class 11 Maths Notes cover topics such as writing numbers in the form of sets, verifying empty, finite, infinite, and equal sets, identifying subsets, performing various operations on sets, and Venn Diagrams, and finding the union and intersection of sets.
CBSE Class 11 Maths Notes Chapter 1 – Sets 






More Resources for CBSE Class 11th Maths Notes Chapter 1 
Some Important formulas learned in CBSE Class 11 Chapter 1 Sets:
 A – A = Ø
 B – A = B⋂ A’
 B – A = B – (A⋂B)
 (A – B) = A if A⋂B = Ø
 (A – B) ⋂ C = (A⋂ C) – (B⋂C)
 A ΔB = (AB) U (B A)
 n(A∪B) = n(A) + n(B) – n(A⋂B)
 n(A∪B∪C)= n(A) +n(B) + n(C) – n(B⋂C) – n (A⋂ B) n (A⋂C) + n(A⋂B⋂C)
 n(A – B) = n(A∪B) – n(B)
 n(A – B) = n(A) – n(A⋂B)
 n(A’) = n(∪) – n(A)
 n(U) = n(A) + n(B) + – n(A⋂B) + n((A∪B)’)
 n((A∪B)’) = n(U) + n(A⋂B) – n(A) – n(B)
Chapter 2: Relations & Functions
The chapter Relations & Functions explains whether or not a relation is a function, determining different types of functions, adding, subtracting, multiplying functions, and determining their range.
The chapter is divided into two sections, Relation, and Functions. The topics covered in the first part are the Cartesian product of sets, which includes subtopics like the Number of elements in the Cartesian product of two finite sets and the Cartesian product of the set of reals with itself. Further, the concept of relation, graphical diagrams, domain, codomain, and range of a relation are discussed.
The next section of this chapter consists of topics like Real valued functions, domain, range of these functions, constant, identity, polynomial, rational, modulus, signum, exponential, logarithmic, and greatest integer functions, with their graphs.
CBSE Class 11 Maths Notes Chapter 2 – Relations & Functions 




More Resources for CBSE Class 11th Maths Notes Chapter 2 

Important formulas used in CBSE Class 11 Notes Chapter 2 Relations & Functions are:
 Inverse of Relation: A and B are any two nonempty sets. Let R be a relationship between two sets A and B. The inverse of relation R, indicated as R^{1}, is a relationship that connects B and A and is defined by
R^{1} ={(b, a) : (a, b) ∈ R}
where, Domain of R = Range of R^{1} and Range of R = Domain of R^{1}.
 A cartesian product A × B of two sets A and B is given by: A × B = { (a,b) : a ϵ A, b ϵ B}
 If (a, b) = (x, y); then a = x and b = y
 If n(A) = x and n(B) = y, then n(A × B) = xy and A × ϕϕ = ϕϕ
 The cartesian product: A × B ≠ B × A.
 Algebra of functions: If the function f : X → R and g : X → R; we have:
 (f + g)(x) = f(x) + g(x) ; x ϵ X
 (f – g)(x) = f(x) – g(x)
 (f . g)(x) = f(x).g(x)
 (kf)(x) = k(f(x)) where k is a real number
 {f/g}(x) = f(x)/g(x), g(x)≠0
Chapter 3: Trigonometric Functions
The chapter Trigonometric Functions mainly focuses on how to measure angles in radians and degrees, and how to convert between the two. The chapter also covers the use of a unit circle to define trigonometric functions, the general solution of trigonometric equations, the signs, domain, and range of trigonometric functions, as well as their graphs.
The chapter introduces students to the process of expressing sin (xy) and cos (xy) in terms of sinx, siny, cosx, and cosy, as well as their simple applications and deducing identities, for sin 2x, cos 2x, tan 2x, sin 3x, cos 3x, and tan 3x, respectively.
CBSE Class 11 Maths Notes Chapter 3 – Trigonometric Functions 





More Resources for CBSE Class 11th Maths Notes Chapter 3 

Useful Important Formulas in CBSE Class 11 Chapter 3: Trigonometric Functions are:
 Reciprocal Trigonometric Ratios:
 sin θ = 1 / (cosec θ)
 cosec θ = 1 / (sin θ)
 cos θ = 1 / (sec θ)
 sec θ = 1 / (cos θ)
 tan θ = 1 / (cot θ)
 cot θ = 1 / (tan θ)
 Trigonometric Ratios of Complementary Angles:
 sin (90° – θ) = cos θ
 cos (90° – θ) = sin θ
 tan (90° – θ) = cot θ
 cot (90° – θ) = tan θ
 sec (90° – θ) = cosec θ
 cosec (90° – θ) = sec θ
 Periodic Trigonometric Ratios
 sin(π/2θ) = cos θ
 cos(π/2θ) = sin θ
 sin(πθ) = sin θ
 cos(πθ) = cos θ
 sin(π+θ)=sin θ
 cos(π+θ)=cos θ
 sin(2πθ) = sin θ
 cos(2πθ) = cos θ
 Trigonometric Identities
 sin^{2} θ + cos^{2} θ = 1 ⇒ sin^{2} θ = 1 – cos^{2} θ ⇒ cos^{2} θ = 1 – sin^{2} θ
 cosec^{2} θ – cot^{2} θ = 1 ⇒ cosec^{2} θ = 1 + cot^{2} θ ⇒ cot^{2} θ = cosec^{2} θ – 1
 sec^{2} θ – tan^{2} θ = 1 ⇒ sec^{2} θ = 1 + tan^{2} θ ⇒ tan^{2} θ = sec^{2} θ – 1
 Product to Sum Formulas
 sin x sin y = 1/2 [cos(x–y) − cos(x+y)]
 cos x cos y = 1/2[cos(x–y) + cos(x+y)]
 sin x cos y = 1/2[sin(x+y) + sin(x−y)]
 cos x sin y = 1/2[sin(x+y) – sin(x−y)]
 Sum to Product Formulas
 sin x + sin y = 2 sin [(x+y)/2] cos [(xy)/2]
 sin x – sin y = 2 cos [(x+y)/2] sin [(xy)/2]
 cos x + cos y = 2 cos [(x+y)/2] cos [(xy)/2]
 cos x – cos y = 2 sin [(x+y)/2] sin [(xy)/2]
 General Trigonometric Formulas:
 sin (x+y) = sin x × cos y + cos x × sin y
 cos(x+y)=cosx×cosy−sinx×siny
 cos(x–y)=cosx×cosy+sinx×siny
sin(x–y)=sinx×cosy−cosx×siny If there are no angles x, y and (x ± y) is an odd multiple of (π / 2); then:
 tan (x+y) = tan x + tan y / 1 − tan x tan y
 tan (x−y) = tan x − tan y / 1 + tan x tan y
 If there are no angles x, y and (x ± y) is an odd multiple of π; then:
 cot (x+y) = cot x cot y−1 / cot y + cot x
 cot (x−y) = cot x cot y+1 / cot y − cot x
 Formulas for twice of the angles:
 sin2θ = 2sinθ cosθ = [2tan θ /(1+tan2θ)]
 cos2θ = cos2θ–sin2θ = 1–2sin2θ = 2cos2θ–1= [(1tan2θ)/(1+tan2θ)]
 tan 2θ = (2 tan θ)/(1tan2θ)
 Formulas for thrice of the angles:
 sin 3θ = 3sin θ – 4sin 3θ
 cos 3θ = 4cos 3θ – 3cos θ
 tan 3θ = [3tan θ–tan 3θ]/[1−3tan 2θ]
Chapter 4: Principle of Mathematical Induction
As the name suggests, the chapter explains the concept of the Principle of Mathematical Induction. The chapter Principle of Mathematical Induction covers a variety of topics, including verifying the induction and justifying the application by considering natural numbers as the least inductive subset of real numbers. The chapter’s exercise covers problems relating to the Principle of Mathematical Induction, as well as its basic applications.
The topics discussed are the process to prove the induction and motivating the application taking natural numbers as the least inductive subset of real numbers.
CBSE Class 11 Maths Notes Chapter 4 – Mathematical Induction 


More Resources for CBSE Class 11th Maths Notes Chapter 4 
Major points covered in CBSE Class 11 Chapter 4: Principle of Mathematical Induction is:
 Principle of Mathematical Induction: The principle of mathematical induction is one such tool that can be used to prove a wide variety of mathematical statements.
 Working Rule:
 Step 1: Show that the given statement is true for n = 1.
 Step 2: Assume that the statement is true for n = k.
 Step 3: Using the assumption made in step 2, show that the statement is true for n = k + 1. We have proved the statement is true for n = k. According to step 3, it is also true for k + 1 (i.e., 1 + 1 = 2). By repeating the above logic, it is true for every natural number.
Chapter 5: Complex Numbers and Quadratic Equations
As the name of the chapter suggests, the Complex Numbers and Quadratic Equations this chapter explains the concept of complex numbers and quadratic equations and their properties. The topics discussed are the square root, algebraic properties, argand plane and polar representation of complex numbers, and solutions of quadratic equations in the complex number system.
The major topics covered in this chapter are determining the modulus and conjugate of a complex number, representing a complex number in the polar form on the argand plane. Solving a quadratic equation, and analyzing the discriminant of a quadratic equation are also explained in this chapter.
CBSE Class 11 Maths Notes Chapter 5 – Complex Numbers and Quadratic Equations 




More Resources for CBSE Class 11th Maths Notes Chapter 5 

Useful Important Information Covered in CBSE Class 11 Chapter 5Complex Numbers and Quadratic Equations are:
 Imaginary Numbers: The square root of a negative real number is called an imaginary number, e.g. √2, √5 etc. The quantity √1 is an imaginary unit and it is denoted by ‘i’ called iota.
i = √1, i^{2} = 1, i^{3} = i, i^{4} = 1
 Equality of Complex Number: Two complex numbers z_{1} = x_{1} + iy_{1} and z_{2} = x_{2} + iy_{2} are equal, if x_{1} = x_{2} and y_{1} = y_{2} i.e. Re(z_{1}) = Re(z_{2}) and Im(z_{1}) = Im(z_{2})
Algebra of Complex Numbers
 Addition: Consider z_{1} = x_{1} + iy_{1} and z_{2} = x_{2} + iy_{2} are any two complex numbers, then their sum is defined as
z_{1} + z_{2} = (x_{1} + iy_{1}) + (x_{2} + iy_{2}) = (x_{1} + x_{2}) + i (y_{1} + y_{2})
 Subtraction: Consider z_{1} = (x_{1} + iy_{1}) and z_{2} = (x_{2} + iy_{2}) are any two complex numbers, then their difference is defined as
z_{1} – z_{2} = (x_{1} + iy_{1}) – (x_{2} + iy_{2}) = (x_{1} – x_{2}) + i(y_{1} – y_{2})
 Multiplication: Consider z_{1} = (x_{1} + iy_{1}) and z_{2} = (x_{2} + iy_{2}) be any two complex numbers, then their multiplication is defined as
z_{1}z_{2} = (x_{1} + iy_{1}) (x_{2} + iy_{2}) = (x_{1}x_{2} – y_{1}y_{2}) + i (x_{1}y_{2} + x_{2}y_{1})
 Division: Consider z_{1} = x_{1} + iy_{1} and z_{2} = x_{2} + iy_{2} be any two complex numbers, then their division is defined as
Conjugate of Complex Number: Consider z = x + iy, if ‘i’ is replaced by (i), then it is called to be conjugate of the complex number z and it is denoted by z¯, i.e.
Modulus of a Complex Number: Consider z = x + iy be a complex number. So, the positive square root of the sum of square of real part and square of imaginary part is called modulus (absolute values) of z and it is denoted by z i.e.
z = √x_{2}+y_{2}
Argand Plane: Any complex number z = x + iy can be represented geometrically by a point (x, y) in a plane, called argand plane or gaussian plane.
Argument of a complex Number: The angle made by line joining point z to the origin, with the positive direction of Xaxis in an anticlockwise sense is called argument or amplitude of complex number. It is denoted by the symbol arg(z) or amp(z).
arg(z) = θ = tan^{1}(y/x)
 Principal Value of Argument
 When x > 0 and y > 0 ⇒ arg(z) = θ
 When x < 0 and y > 0 ⇒ arg(z) = π – θ
 When x < 0 and y < 0 ⇒ arg(z) = (π – θ)
 When x > 0 and y < 0 ⇒ arg(z) = θ
Polar Form of a Complex Number: When z = x + iy is a complex number, so z can be written as,
 z = z (cosθ + isinθ), where θ = arg(z).
which is known as the polar form.
Now, when the general value of the argument is θ, so the polar form of z is written as,
 z = z [cos (2nπ + θ) + isin(2nπ + θ)], where n is an integer.
Chapter 6: Linear Inequalities
Chapter 6 of Class 11 Maths NCERT notes explains the concept of Linear Inequalities. Linear inequalities deal with the graphical meaning of the algebraic solutions to linear equations in one and two variables illustrated by linear inequalities. The notes of this chapter can help learners develop their visualization abilities. The following notes cover solving linear inequalities, finding the graphical solution to linear equations in two variables, and translating word problems to convert them to mathematical equations.
CBSE Class 11 Maths Notes Chapter 6 – Linear Inequalities 




More Resources for CBSE Class 11th Maths Notes Chapter 6 
Useful important information provided in CBSE Class 11 Chapter 6 Linear Inequalities are:
 Symbols used in inequalities
 The symbol < means less than.
 The symbol > means greater than.
 The symbol < with a bar underneath ≤ means less than or equal to.
 The symbol > with a bar underneath ≥ means greater than or equal to.
 The symbol ≠ means the quantities on the left and right sides are not equal to.
Chapter 7: Permutations and Combinations
Chapter 7 of Class 11 Maths NCERT notes that the concepts of permutation (an arrangement of a number of objects in a definite order) and combination (a collection of the objects irrespective of the order) are explained. The topics discussed are the fundamental principle of counting, factorial, permutations, combinations, and their applications.
CBSE Class 11 Maths Notes Chapter 7 – Permutations and Combinations 



More Resources for CBSE Class 11th Maths Notes Chapter 7 

Important formulas used in CBSE Class 11 Chapter 7 Permutations and Combinations are:
 Factorial: The continued product of first n natural number is called factorial ‘n’. It is denoted by n! which is given by,
n! = n(n – 1)(n – 2)… 3 × 2 × 1 and 0! = 1! = 1
 Permutations: Permutation refers to the various arrangements that can be constructed by taking some or all of a set of things. The number of an arrangement of n objects taken r at a time, where 0 < r ≤ n, denoted by ^{n}P_{r} is given by
^{n}P_{r} = n! / (n−r)!
 The number of permutation of n objects of which p_{1} are of one kind, p_{2} are of second kind,… pk are of kth kind such that p_{1} + p_{2} + p_{3} + … + p_{k} = n is
n! / p_{1}! p_{2}! p_{3}! ….. p_{k}!
 Combinations: Combinations are any of the various selections formed by taking some or all of a number of objects, regardless of their arrangement. The number of r objects chosen from a set of n objects is indicated by ^{n}C_{r}, and it is given by
^{n}C_{r} = n! / r!(n−r)!
 Relation Between Permutation and combination: The relationship between the two concepts is given by two theorems as,
 ^{n}P_{r} = ^{n}C_{r }r! when 0 < r ≤ n.
 ^{n}C_{r} + ^{n}C_{r1 }= ^{n+1}C_{r}
Chapter 8: Binomial Theorem
The binomial theorem is a principle that can be used to answer and simplify a variety of problems in not only the previous chapter but also in related topics like probability. As a result, students must be familiar with the binomial theorem and how to use it to expand expressions.
Chapter 8 of Class 11 Maths NCERT notes discusses the binomial theorem for positive integers used to solve complex calculations. The topics discussed are the history, statement, and proof of the binomial theorem and its expansion along with Pascal’s triangle.
CBSE Class 11 Maths Notes – Chapter 8 Binomial Theorem 



More Resources for CBSE Class 11th Maths notes Chapter 8 
Important conclusions from CBSE Class 11 Chapter 8 Binomial Theorem are:
 Binomial Theorem: The expansion of a binomial for any positive integer n is given by Binomial Theorem, which is
(a + b)^{n} = ^{n}C_{0} a_{n} + ^{n}C_{1} a_{n1} b + ^{n}C2 a_{n2} b_{2} + … + ^{n}C_{n1} a b_{n1} + ^{n}C_{n} b_{n}
 Some special cases from the binomial theorem can be written as:
 (x – y)^{n} = ^{n}C_{0} x_{n} – ^{n}C_{1} x_{n1} y + ^{n}C_{2} x_{n2} y_{2} + … + (1)^{n} ^{n}C_{n} x_{n}
 (1 – x)^{n} = ^{n}C_{0} – ^{n}C_{1} x + ^{n}C_{2} x^{2} – …. (1)^{n} ^{n}C_{n} x_{n}
 ^{n}C_{0} = ^{n}C_{n} = 1
 Pascal’s triangle: The coefficients of the expansions are arranged in an array called Pascal’s triangle.
 General Term of following expansions are:
 (a + b)^{n} is T_{r+1 }= ^{n}C_{r} a^{n−r}.b^{r}
 (a – b)^{n} is (1)^{r} ^{n}C_{r} a^{n−r}.b^{r}
 (1 + x)_{n} = ^{n}C_{r} . x_{r}
 (1 – x)_{n} = (1)^{r} ^{n}C_{n} x^{r}
 Middle Terms: In the expansion (a + b)^{n}, if n is even, then the middle term is the (n/2 + 1)^{th} term. If n is odd, then the middle terms are (n/2 + 1)^{th} and ((n+1)/2+1)^{th} terms.
Chapter 9: Sequences and Series
Students will learn about arithmetic and geometric progressions, as well as how they are related to one another, through sequences and series. This lesson also includes a stepbystep guide to working with special series.
The chapter of Class 11 Maths NCERT notes – Sequences and Series discusses the concepts of a sequence (an ordered list of numbers) and series (the sum of all the terms of a sequence). The topics discussed are sequence and series, arithmetic and geometric progression, and arithmetic and geometric mean.
CBSE Class 11 Maths Notes – Chapter 9 Sequences and Series 



More Resources for CBSE Class 11th Maths Notes Chapter 9 

Some Important formulas covered in CBSE Class 11 Chapter 9 Sequences and Series are:
 For an Arithmetic Series: a, a+d, a+2d, a+3d, a+4d, …….a +(n1)d
 The first term: a_{1} = a,
 The second term: a_{2} = a + d,
 The third term: a_{3} = a + 2d,
 The nth term: a_{n} = a + (n – 1)d
 nth term of an AP from the last term is a’_{n} =a_{n} – (n – 1)d.
 a_{n} + a’_{n} = constant
 Common difference of an AP i.e. d = a_{n} – a_{n1}, ∀ n>1.
 Sum of n Terms of an AP: S_{n} = n/2 [2a + (n – 1)d] = n/2 (a_{1}+ a_{n})
 A sequence is an AP If the sum of n terms is of the form An^{2} + Bn, where A and B are constant and A = half of common difference i.e. 2A = d.
a_{n} =S_{n} – S_{n1}
 Arithmetic Mean: If a, A and b are in A.P then A = (a+b)/2 is called the arithmetic mean of a and b. If a_{1}, a_{2}, a_{3},……a_{n} are n numbers, then their arithmetic mean is given by:
 The common difference is given as, d = (b – a)/(n + 1)
 The Sum of n arithmetic mean between a and b is, n (a+b/2).
 Geometric Progression (GP): A sequence in which the ratio of two consecutive terms is constant is called geometric progression.
 The constant ratio is called common ratio (r).
i.e. r = a_{n}+1/a_{n}, ∀ n>1 The general term or nth term of GP is a_{n} =ar^{n1}
 nth term of a GP from the end is a’_{n} = 1/r^{n1}, l = last term
 If a, b and c are three consecutive terms of a GP then b^{2} = ac.
 Geometric Mean (GM): If a, G and b are in GR then G is called the geometric mean of a and b and is given by G = √(ab).
 If a,G_{1}, G_{2}, G_{3},….. G_{n}, b are in GP then G_{1}, G_{2}, G_{3},……G_{n} are in GM’s between a and b, then
common ratio is: If a_{1}, a_{2}, a_{3},…, a_{n} are n numbers are nonzero and nonnegative, then their GM is given by
GM = (a_{1} . a_{2} . a_{3} …a_{n})^{1/n} Product of n GM is G_{1} × G_{2} × G_{3} ×… × G_{n} = G_{n} = (ab)^{n/2}
 Sum of first n natural numbers is: Σn = 1 + 2 + 3 +… + n = n(n+1)/2
 Sum of squares of first n natural numbers is: Σn^{2} = 1^{2} + 2^{2} + 3^{2} + … + n^{2} = n(n+1)(2n+1)/6
 Sum of cubes of first n natural numbers is: Σn^{3} = 1^{3} + 2^{3} + 3^{3} + .. + n^{3} = (n(n+1)(2n+1)/6)^{2}
Chapter 10: Straight Lines
Chapter 10 Straight Lines in Class 11 is an easy lesson but quite confusing due to the large number of formulas. So, finds it is difficult for some students to understand. Therefore, our experts would recommend students first understand the derivation and concept behind these formulas. Then do the constant practice by solving multiple questions on each of them.
Straight lines defined the concept of the line, its angle, slope, and general equation. The topics discussed are the slope of a line, the angle between two lines, various forms of line equations, the general equation of a line, and the family of lines respectively.
CBSE Class 11 Maths Notes – Chapter 10 Straight Lines 



More Resources for CBSE Class 11th Maths Notes Chapter 10 

Important formulas covered in CBSE Class 11 Chapter 10 Straight Lines:
 Distance Formula: The distance between two points A(x_{1}, y_{1}) and B (x_{2}, y_{2}) is given by,
 Section Formula: The coordinates of the point which divides the joint of (x_{1}, y_{1}) and (x_{2}, y_{2}) in the ratio m:n internally, is
And externally is:
 MidPoint of the joint of (x_{1}, y_{1}) and (x_{2}, y_{2}) is: .
 Xaxis divides the line segment joining (x_{1}, y_{1}) and (x_{2}, y_{2}) in the ratio y_{1} : y_{2}.
 Yaxis divides the line segment joining (x_{1}, y_{1}) and (x_{2}, y_{2}) in the ratio x_{1} : x_{2}.
 Coordinates of Centroid of a Triangle with vertices (x_{1}, y_{1}), (x_{2}, y_{2}) and (x_{3}, y_{3}) is
 Area of Triangle: The area of the triangle, the coordinates of whose vertices are (x_{1}, y_{1}), (x_{2}, y_{2}) and (x_{3}, y_{3}) is,
 Slope or Gradient of Line: The inclination of angle θ to a line with a positive direction of Xaxis in the anticlockwise direction, the tangent of angle θ is said to be slope or gradient of the line and is denoted by m. i.e.
m = tan θ
 Angle between Two Lines: The angle θ between two lines having slope m_{1} and m_{2} is,
 If two lines are parallel, their slopes are equal i.e. m_{1} = m_{2}.
 If two lines are perpendicular to each other, then their product of slopes is 1 i.e. m_{1}m_{2} = 1.
 Point of intersection of two lines: Let equation of lines be ax_{1} + by_{1} + c_{1} = 0 and a_{2}x + b_{2}y + c_{2} = 0, then their point of intersection is
 Distance of a Point from a Line: The perpendicular distanced of a point P(x_{1}, y_{1})from the line Ax + By + C = 0 is given by,
 Distance Between Two Parallel Lines: The distance d between two parallel lines y = mx + c_{1} and y = mx + c_{2} is given by,
 Different forms of Equation of a line:
 General Equation of a Line: Any equation of the form Ax + By + C = 0, where A and B are simultaneously not zero is called the general equation of a line
 Normal form: The equation of a straight line upon which the length of the perpendicular from the origin is p and angle made by this perpendicular to the xaxis is α, is given by: x cos α + y sin α = p.
 Intercept form: The equation of a line that cuts off intercepts a and b respectively on the x and yaxes is given by: x/a + y/b = 1.
 Slopeintercept form: The equation of the line with slope m and making an intercept c on the yaxis, is y = mx + c.
 One pointslope form: The equation of a line that passes through the point (x_{1}, y_{1}) and has the slope of m is given by y – y_{1} = m (x – x_{1}).
 Two points form: The equation of a line passing through the points (x_{1}, y_{1}) and (x_{2}, y_{2}) is given by
Chapter 11: Conic Sections
Conic sections go further into a number of figures, including circle, parabola, ellipse and hyperbola, as well as the many characteristics of each. The various components of these figures are explained to the students, as well as how to determine their measurements.
The topics discussed in the present chapter are the sections of a cone, the degenerate case of a conic section along with the equations and properties of conic sections.
CBSE Class 11 Maths Notes – Chapter 11 Conic Sections 







More Resources for CBSE Class 11th Maths Notes Chapter 11 

Some Important formulas learned in CBSE Class 11 Chapter 11 Conic Sections are:
 Equation of a circle with radius r having a centre (h, k) is given by (x – h)^{2} + (y – k)^{2} = r^{2}.
 The general equation of the circle is given by x^{2} + y^{2} + 2gx + 2fy + c = 0 , where, g, f and c are constants.
 The centre of the circle is (g, f).
 The radius of the circle is r = √(g^{2 }+ f^{2 }− c)
 The parametric equation of the circle x^{2} + y^{2} = r^{2} are given by x = r cos θ, y = r sin θ, where θ is the parameter.
 And the parametric equation of the circle (x – h)^{2} + (y – k)^{2} = r^{2} are given by x = h + r cos θ, y = k + r sin θ.
 Parabola: A parabola is the set of points P whose distances from a fixed point F in the plane are equal to their distance from a fixedline l in the plane. The fixed point F is called focus and the fixedline l is the directrix of the parabola.
Different forms of parabola
y^{2}= 4ax
y^{2} = 4ax
x^{2} = 4ay
x^{2} = 4ay
Axis of parabola
y = 0
y = 0
x = 0
x = 0
Directrix of parabola
x = a
x = a
y = a
y = a
Vertex
(0, 0)
(0, 0)
(0, 0)
(0, 0)
Focus
(a, 0)
(a, 0)
(0, a)
(0, a)
Length of latus rectum
4a
4a
4a
4a
Focal length
x + a
x – a
y + a
y – a
 Ellipse: An ellipse is the set of all points in the plane whose distances from a fixed point in the plane bears a constant ratio, less than to their distance from a fixed point in the plane. The fixed point is called focus, the fixed line a directrix and the constant ratio (e) the eccentricity of the ellipse. The two standard forms of ellipse with their terminologies are mentioned below in the table:
Different forms of Ellipse
x^{2}/a^{2 }+ y^{2}/b^{2}= 1, a > b
x^{2}/b^{2 }+ y^{2}/a^{2}= 1, a > b
Equation of Major Axis
y = 0
x = 0
Length of Major Axis
2a
2a
Equation of Minor Axis
x = 0
y = 0
Length of Minor Axis
2b
2b
Equation of Directrices
x = ±a/e
y = ±a/e
Vertex
(±a, 0)
(0, ±a)
Focus
(±ae, 0)
(0, ±ae)
Length of latus rectum
2b^{2}/a
2b^{2}/a
 Hyperbola: A hyperbola is the locus of a point in a plane which moves in such a way that the ratio of its distance from a fixed point in the same plane to its distance from a fixed line is always constant which is always greater than unity. The fixed point is called the focus, the fixed line is called the directrix and the constant ratio, generally denoted bye, is known as the eccentricity of the hyperbola. The two standard forms of hyperbola with their terminologies are mentioned below in the table:
Different forms of Hyperbola
x^{2}/a^{2 }– y^{2}/b^{2}= 1
x^{2}/a^{2 }– y^{2}/b^{2}= 1
Coordinates of centre
(0, 0)
(0, 0)
Coordinates of vertices
(±a, 0)
(0, ±a)
Coordinates of foci
(±ae, 0)
(0, ±ae)
Length of Conjugate axis
2b
2b
Length of Transverse axis
2a
2a
Equation of Conjugate axis
x = 0
y = 0
Equation of Transverse axis
y = 0
x = 0
Equation of Directrices
x = ±a/e
y = ±a/e
Eccentricity (e)
√(a^{2}+b^{2})/a^{2}
√(a^{2}+b^{2})/a^{2}
Length of latus rectum
2b^{2}/a
2b^{2}/a
Chapter 12: Introduction to Threedimensional Geometry
This chapter Introduction to Threedimensional Geometry of Class 11 Maths NCERT notes, it is explained the concepts of geometry in threedimensional space. The topics discussed are the coordinate axes and planes respectively, points coordinate, distance, and a section for points.
Students learn geometrical principles such as the distance and section formulas through an introduction to threedimensional geometry. It helps students in understanding how to effectively apply these formulas to solve problems.
CBSE Class 11 Maths Notes – Chapter 12 Introduction to ThreeDimensional Geometry 






More Resources for CBSE Class 11th Maths Notes Chapter 12 
Important points covered in CBSE Class 11 Chapter 12 Introduction to Threedimensional Geometry:
 Coordinate Axes: In three dimensions, the coordinate axes of a rectangular cartesian coordinate system are three mutually perpendicular lines. These axes are called the X, Y and Z axes.
 Coordinate Planes: The three planes determined by the pair of axes are the coordinate planes. These planes are called XY, YZ and ZX planes and they divide the space into eight regions known as octants.
 Coordinates of a Point in Space: The coordinates of a point in the space are the perpendicular distances from P on three mutually perpendicular coordinate planes YZ, ZX, and XY respectively. The coordinates of a point P are written in the form of triplet like (x, y, z). The coordinates of any point on:
 Xaxis is of the form (x, 0,0)
 Yaxis is of the form (0, y, 0)
 Zaxis is of the form (0, 0, z)
 XYplane are of the form (x, y, 0)
 YZplane is of the form (0, y, z)
 ZXplane are of the form (x, 0, z)
Chapter 13: Limits and Derivatives
Chapter 13 of Class 11 Maths NCERT notes explains the concept of calculus that deals with the study of change in the value of a function when the change occurs in the domain points. The topics discussed are the definition and algebraic operations of limits and derivatives respectively.
The Chapter Limits and Derivatives comprise topics such as determining the limit of a function at a point, algebra of limits, limits of trigonometric functions, using the limit formula to find the derivative of a function and algebra of derivatives.
CBSE Class 11 Maths Notes – Chapter 13 Limits and Derivatives 

More Resources for CBSE Class 11th Maths Notes Chapter 13 

Some Important formulas covered in CBSE Class 11 Chapter 13 Limits and Derivatives:
 Left Hand and RightHand Limits: If values of the function at the point which are very near to a on the left tends to a definite unique number as x tends to a, then the unique number so obtained is called the lefthand limit of f(x) at x = a, we write it as
 Similarly, right hand limit is given as,
 A limit exists when:
and both exists or,
 Some Important Properties of Limits: Consider f and g be two functions such that both \lim_{x\to a}f(x) and \lim_{x\to a}g(x) exists, then:
 Some Standard Limits are given as:
 Derivatives: Consider a realvalued function f, such that:
is known as the Derivative of function f at x if and only if,
exists finitely.
 Some Important Properties of Derivatives: Consider f and g be two functions such that their derivatives can be defined in a common domain as:
 Some Standard Derivatives are given as:
Chapter 14: Mathematical Reasoning
Mathematical problemsolving skills help students in developing and enhance their reasoning abilities. Students will read sentences and make logical conclusions from them in this lesson. As the name suggests, the chapter explains the concepts of mathematical reasoning (a critical skill to analyze any given hypothesis in the context of mathematics).
The topics explained in detail are compound statements, the negation, and implication of statements, how to validate statements as well as contrapositive and converse statements.
CBSE Class 11 Maths Notes – Chapter 14 Mathematical Reasoning 




More Resources for CBSE Class 11th Maths Notes Chapter 14 
Important points learned in CBSE Class 11 Chapter 14 Mathematical Reasoning are:
 Compound statement: A statement is a compound statement if it is made up of two or more smaller statements. The smaller statements are called component statements of the compound statement. The Compound statements are made by:
 Connectives: “AND”, “OR”
 Quantifiers: “there exists”, “For every”
 Implications: The meaning of implications “If ”, “only if ”, “ if and only if ”.
 “p ⇒ q” :
 p is a sufficient condition for q or p implies q.
 q is necessary to condition for p. The converse of a statement p ⇒ q is the statement q ⇒ p.
 p⇒ q together with its converse gives p if and only if q.
 “p ⇔ q”:
 p implies q (denoted by p ⇒ q)
 p is a sufficient condition for q
 q is a necessary condition for p
 p only if q
 ∼q implies ∼p
Chapter 15: Statistics
Chapter 15 of Class 11 Maths is a very crucial lesson from an examination perspective. A student must revise Statistics from previous classes, and understand and memorize all the statistics formulas. Also, use these formulas to practice all the NCERT questions from Chapter 15 Statistics.
Chapter 15 of Class 11 Maths NCERT notes explains the concepts of statistics (data collected for specific purposes), dispersion, and methods of calculation for ungrouped and grouped data. The topics discussed are range, mean deviation, variance and standard deviation, and analysis of frequency distributions.
CBSE Class 11 Maths Notes – Chapter 15 Statistics 



More Resources for CBSE Class 11th Maths Notes Chapter 15 
Some Important formulas covered in CBSE Class 11 Chapter 15 Statistics:
 Range: The measure of dispersion which is easiest to understand and easiest to calculate is the range. Range is defined as the difference between two extreme observation of the distribution.
Range of distribution = Largest observation – Smallest observation.
 Mean Deviation: Mean deviation for ungrouped data For n observations x_{1}, x_{2}, x_{3},…, x_{n}, the mean deviation about their mean x¯ is given by:
And, the Mean deviation about its median M is given by,
Mean deviation for discrete frequency distribution
 Variance: Variance is the arithmetic mean of the square of the deviation about mean x¯. Let x_{1}, x_{2}, ……x_{n} be n observations with x¯ as the mean, then the variance denoted by σ^{2}, is given by
 Standard deviation: If σ^{2} is the variance, then σ is called the standard deviation is given by
Standard deviation of a discrete frequency distribution is given by
 Coefficient of variation: In order to compare two or more frequency distributions, we compare their coefficient of variations. The coefficient of variation is defined as
Coefficient of variation = (Standard deviation / Mean) × 100
Chapter 16: Probability
Class 11 Maths Probability builds on previous classes by introducing students to probability concepts such as random experiments, outcomes, sample space, different sorts of events, and other related principles that make up the chapter’s backbone.
Chapter 16 of Class 11 Maths NCERT notes discusses the concept of probability (a measure of uncertainty of various phenomena or a chance of occurrence of an event). The topics discussed are random experiments, outcomes, sample spaces, event, and their type.
CBSE Class 11 Maths Notes – Chapter 16 Probability 



More Resources for CBSE Class 11th Maths Notes Chapter 16 
Major points covered in CBSE Class 11 Chapter 16 Probability:
 For any random experiment, let S be the sample space. The probability P is a realvalued function whose domain is the power set of S and [0, 1] is the range interval. For any event E: P(E) ≥ 0 and P(S) = 1
 Mutually exclusive events: If E and F are mutually exclusive events, then: P(E ∪ F) = P(E) + P(F)
 Equally likely outcomes: All outcomes with equal probability are called equally likely outcomes. Let S be a finite sample space with equally likely outcomes and A be the event. Therefore, the probability of an event A is: P(A) = n(A) / n(S), where n(A) is the number of elements on the set A and n(S) is the Total number of outcomes or the number of elements in the sample space S
 Let P and Q be any two events, then the following formulas can be derived.
 Event P or Q: The set P ∪ Q
 Event P and Q: The set P ∩ Q
 Event P and not Q: The set P – Q
 P and Q are mutually exclusive if P ∩ Q = φ
 Events P_{1}, P_{2}, . . . . . , P_{n} are exhaustive and mutually exclusive if P_{1} ∪ P_{2} ∪ . . . . . ∪ P_{n} = S and E_{i} ∩ E_{j} = φ for all i ≠ j.
Important Resources for CBSE Class 11th provided by GeeksforGeeks:
 NCERT Solutions Maths Class 11
 RD Sharma Solutions Maths Class 11
 CBSE Class 11 Maths Formulas
 CBSE Physics Class 11 Notes
 CBSE Class 11 Chemistry Notes
FAQs on CBSE Class 11th Standard Maths Notes
1. What is the key importance of Class 11 Maths NCERT Notes?
Students in class 11 must study for their home examinations as well as competitive tests (IITJEE, BITS, etc.). These NCERT Notes explanations give a stepbystep interpretation of all solutions as well as the concepts, ensure that students learn how to write an exam and achieve the highest possible result. It also includes tips and tactics for solving complex problems in seconds, which are very useful for competitive exams.
2. What are some important topics from Class 11 Maths NCERT for CBSE final year exams?
Following is the list of some important chapters/topics from Class 11 Maths NCERT:
 Set Theory
 Trigonometry
 Algebra
 Arithmetic
 Calculus
 Geometry
 Probability and Statistics
 Number System
3. What are the Best Ways to Learn NCERT Class 11th Maths Concepts?
The easiest approach to study the topics contained in NCERT answers class 11th mathematics is to understand a topic and practise questions on it on a regular basis. Students may get the most out of these answers by studying the subject on a regular basis and ensuring that they obtain good grades in their exams.
4. What are the Important Formulas for Class 11 Maths?
Algebra, trigonometry, quadratic equations, statistics, and probability are among topics covered in class 11 math formulae. The following are some of the most important Class 11 math formulae from these topics:
 A U B = {x: x ∈ A (or) x ∈ B}
 A ∩ B = {x: x ∈ A (and) x ∈ B}
 A × B = {(a, b): a ∈ A, b ∈ B}
 sin(x + y) = sin(x) cos(y) + cos(x) sin(y)
 cos(x + y) = cos(x) cos(y) – sin(x) sin(y)
 tan(x + y) = (tan(x) + tan(y)) / (1 tan(x) × tan(y))
 sin(x – y) = sin(x) cos(y) – cos(x) sin(y)
 cos(x – y) = cos(x) cos(y) + sin(x) sin(y)
 tan(x – y) = (tan(x) – tan(y)) / (1 + tan(x) × tan (y))
 f ´( x ) = d f(x)/dx
 x̅ = ∑xi – x̅ / n
 σ^{2} = ∑fi(xi – x̅)^{2}/ N