Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Class 11 RD Sharma Solutions- Chapter 29 Limits – Exercise 29.3

  • Last Updated : 02 Feb, 2021

Question 1. Evaluate \displaystyle\lim_{x\to-5}\frac{2x^2+9x-5}{x+5}

Solution:

\displaystyle\lim_{x\to-5}\frac{2x^2+9x-5}{x+5}\\ =\displaystyle\lim_{x\to-5}\frac{(x+5)(2x-1)}{(x+5)}\\

Attention reader! All those who say programming isn't for kids, just haven't met the right mentors yet. Join the  Demo Class for First Step to Coding Coursespecifically designed for students of class 8 to 12. 

The students will get to learn more about the world of programming in these free classes which will definitely help them in making a wise career choice in the future.

=\displaystyle\lim_{x\to-5}{(2x-1)}    = 2(-5) – 1



= -10  – 1 

= -11

Question 2. Evaluate \displaystyle\lim_{x\to3}\frac{x^2-4x+3}{x^2-2x-3}

Solution:

\displaystyle\lim_{x\to3}\frac{x^2-4x+3}{x^2-2x-3}\\ =\displaystyle\lim_{x\to3}\frac{x^2-3x-x+3}{x^2+x-3x-3}\\ =\displaystyle\lim_{x\to3}\frac{x(x-1)-3(x-1)}{x(x+1)-3(x+1)}\\ =\displaystyle\lim_{x\to3}\frac{(x-1)(x-3)}{(x+1)(x-3)}\\ =\displaystyle\lim_{x\to3}\frac{x-1}{x+1}\\ =\frac{3-1}{3+1}\\ =\frac{2}{4}\\ =\frac{1}{2}

Question 3. Evaluate \displaystyle\lim_{x\to3}\frac{x^4-81}{x^2-9}

Solution:

\displaystyle\lim_{x\to3}\frac{x^4-81}{x^2-9}\\ =\displaystyle\lim_{x\to3}\frac{(x^2-9)(x^2+9)}{(x^2-9)}\\ =\displaystyle\lim_{x\to3}x^2+9\\

= (3)2 + 9 = 9 + 9 = 18

Question 4. Evaluate \displaystyle\lim_{x\to2}\frac{x^3-8}{x^2-4}

Solution:



\displaystyle\lim_{x\to2}\frac{x^3-8}{x^2-4}\\ =\displaystyle\lim_{x\to2}\frac{(x-2)(x^2+4+2x)}{(x-2)(x+2)}\\ =\frac{(2)^2+4+2(2)}{2+2}\\ =\frac{4+4+4}{4}\\ =\frac{12}{4}

= 3

Question 5. Evaluate \displaystyle\lim_{x\to-\frac{1}{2}}\frac{8x^3+1}{2x+1}

Solution:

\displaystyle\lim_{x\to-\frac{1}{2}}\frac{8x^3+1}{2x+1}\\ =\displaystyle\lim_{x\to-\frac{1}{2}}\frac{8\left(x^3+\frac{1}{8}\right)}{2\left(x+\frac{1}{2}\right)}\\ =\frac{8}{2}\displaystyle\lim_{x\to-\frac{1}{2}}\frac{\left(x^3+\left(\frac{1}{2}\right)^3\right)}{x+\frac{1}{2}}\\ =4\displaystyle\lim_{x\to-\frac{1}{2}}\frac{\left(x+\frac{1}{2}\right)\left(x^2+\frac{1}{4}-\frac{1}{2}x\right)}{\left(x+\frac{1}{2}\right)}\\ =4\left(\left(\frac{-1}{2}\right)^2+\frac{1}{4}-\frac{1}{2}\left(\frac{1}{2}\right)\right)\\ =4\left(\frac{1}{4}+\frac{1}{4}+\frac{1}{4}\right)

= 3

Question 6. Evaluate \displaystyle\lim_{x\to4}\frac{x^2-7x+12}{x^2-3x-4}

Solution:

\displaystyle\lim_{x\to4}\frac{x^2-7x+12}{x^2-3x-4}\\ =\displaystyle\lim_{x\to4}\frac{x^2-3x-4x+12}{x^2+x-4x-4}\\ =\displaystyle\lim_{x\to4}\frac{x(x-3)-4(x-3)}{x(x+1)-1(x+1)}\\ =\displaystyle\lim_{x\to4}\frac{(x-3)(x-4)}{(x-4)(x+1)}\\ =\displaystyle\lim_{x\to4}\frac{x-3}{x+1}\\ =\frac{4-3}{4+1}\\ =\frac{1}{5}

Question 7. Evaluate \displaystyle\lim_{x\to2}\frac{x^4-16}{x-2}

Solution:

\displaystyle\lim_{x\to2}\frac{x^2-16}{x-2}\\ =\displaystyle\lim_{x\to2}\frac{(x^2-4)(x^2+4)}{(x-2)}\\ =\displaystyle\lim_{x\to2}\frac{(x-2)(x+2)(x^2+4)}{(x-2)}\\ =\displaystyle\lim_{x\to2}(x+2)(x^2+4)

= (2 + 2)(4 + 4)



= 4(8)

= 32

Question 8. Evaluate \displaystyle\lim_{x\to5}\frac{x^2-9x+20}{x^2-6x+5}

Solution:

\displaystyle\lim_{x\to5}\frac{x^2-9x+20}{x^2-6x+5}\\ =\displaystyle\lim_{x\to5}\frac{x^2-4x-5x+20}{x^2-x-5x+5}\\ =\displaystyle\lim_{x\to5}\frac{x(x-4)-5(x-4)}{x(x-1)-5(x-1)}\\ =\displaystyle\lim_{x\to5}\frac{(x-5)(x-4)}{(x-5)(x-1)}\\ =\displaystyle\lim_{x\to5}\frac{x-4}{x-1}\\ =\frac{5-4}{5-1}\\ =\frac{1}{4}

Question 9. \displaystyle\lim_{x\to-1}\frac{x^3+1}{x+1}

Solution:

\displaystyle\lim_{x\to-1}\frac{x^3+1}{x+1}\\ =\displaystyle\lim_{x\to-1}\frac{(x+1)(x^2-x+1)}{(x+1)}\ \ \ \ \ \ [a^3+b^3=(a+b)(a^2+b^2-ab)]\\ =\displaystyle\lim_{x\to-1}(x^2-x+1)

= (-1)2 – (-1) + 1

= 1 + 1 + 1

= 3

Question 10. Evaluate \displaystyle\lim_{x\to5}\frac{x^3-125}{x^2-7x+10}

Solution: 



\displaystyle\lim_{x\to5}\frac{x^3-125}{x^2-7x+10}\\ =\displaystyle\lim_{x\to5}\frac{(x-5)(x^2+25+5x)}{(x-2)(x-5)}\\ =\frac{(5)^2+25+5(5)}{(5-2)}\\ =\frac{25+25+25}{3}\\ =\frac{75}{3}

Question 11. Evaluate \displaystyle\lim_{x\to\sqrt{2}}\frac{x^2-2}{x^2+\sqrt{2}x-4}

Solution:

\displaystyle\lim_{x\to\sqrt{2}}\frac{x^2-2}{x^2+\sqrt{2}x-4}

=\displaystyle\lim_{x\to\sqrt{2}}\frac{(x-\sqrt{2})(x+\sqrt{2})}{x^2+2\sqrt{2}x-\sqrt{2}x-4}\\ =\displaystyle\lim_{x\to\sqrt{2}}\frac{(x-\sqrt{2})(x+\sqrt{2})}{x(x+2\sqrt{2}-\sqrt{2(x+2\sqrt{2}})}\\ =\displaystyle\lim_{x\to\sqrt{2}}\frac{(x-\sqrt{2})(x+\sqrt{2})}{(x+2\sqrt{2})(x-\sqrt{2})}\\ =\frac{\sqrt{2}+\sqrt{2}}{\sqrt{2}+2\sqrt{2}}\\ =\frac{2\sqrt{2}}{3\sqrt{2}}\\ =\frac{2}{3}

Question 12. Evaluate \displaystyle\lim_{x\to\sqrt{3}}\frac{x^2-3}{x^2+3\sqrt{3}-12}

Solution:

\displaystyle\lim_{x\to\sqrt{3}}\frac{x^2-3}{x^2+3\sqrt{3}-12}

=\displaystyle\lim_{x\to\sqrt{3}}\frac{(x-\sqrt{3})(x+\sqrt{3})}{x^2+4\sqrt{3x}-\sqrt{3x}-12}\\ =\displaystyle\lim_{x\to\sqrt{3}}\frac{(x-\sqrt{3})(x+\sqrt{3})}{x(x+4\sqrt{3})-\sqrt{3}(x+4\sqrt{3})}\\ =\displaystyle\lim_{x\to\sqrt{3}}\frac{(x-\sqrt{3})(x+\sqrt{3})}{(x-\sqrt{3})(x+4\sqrt{3})}\\ =\frac{\sqrt{3}+\sqrt{3}}{\sqrt{3}+4\sqrt{3}}\\ =\frac{2\sqrt{3}}{5\sqrt{3}}\\ =\frac{2}{5}

Question 13. Evaluate \displaystyle\lim_{x\to\sqrt{3}}\frac{x^4-9}{x^2+4\sqrt{3}x-15}

Solution:

\displaystyle\lim_{x\to\sqrt{3}}\frac{x^4-9}{x^2+4\sqrt{3}x-15}

=\displaystyle\lim_{x\to\sqrt{3}}\frac{(x-\sqrt{3})(x+\sqrt{3})(x^2+3)}{(x-\sqrt{3})(x+5\sqrt{3})}\\ =\displaystyle\lim_{x\to\sqrt{3}}\frac{(x+\sqrt{3})(x^2+3)}{(x+5\sqrt{3})}\\ =\frac{(\sqrt{3}+\sqrt{3})(3+3)}{(\sqrt{3}+5\sqrt{3})}\\ =\frac{(2\sqrt{3})(6)}{6\sqrt{3}}

= 2

Question 14. Evaluate \displaystyle\lim_{x\to\sqrt{2}}{\left(\frac{x}{x-2}-\frac{4}{x^2-2x}\right)}

Solution:

\displaystyle\lim_{x\to\sqrt{2}}{\left(\frac{x}{x-2}-\frac{4}{x^2-2x}\right)}

=\displaystyle\lim_{x\to2}{\left(\frac{x}{x-2}-\frac{4}{x(x-2)}\right)}\\ =\displaystyle\lim_{x\to2}{\left(\frac{x(x)-4}{x(x-2)}\right)}\\ =\displaystyle\lim_{x\to2}{\left(\frac{x^2-4}{x(x-2)}\right)}\\ =\displaystyle\lim_{x\to2}{\left(\frac{(x-2)(x+2)}{x(x-2)}\right)}\\ =\displaystyle\lim_{x\to2}\frac{(x+2)}{x}\\ =\frac{2+2}{2}\\ =\frac{4}{2}

= 2




My Personal Notes arrow_drop_up
Recommended Articles
Page :