Skip to content
Related Articles

Related Articles

Improve Article

Class 11 RD Sharma Solutions – Chapter 29 Limits – Exercise 29.10 | Set 2

  • Last Updated : 04 May, 2021
Geek Week

Evaluate the following limits:

Question 16.\lim_{x\to0}\frac{sin2x}{e^x-1}

Solution:

We have,

=\lim_{x\to0}\frac{sin2x}{e^x-1}

=\lim_{x\to0}\frac{2sin2x}{2x}×\lim_{x\to0}\frac{x}{e^x-1}

=\lim_{x\to0}\frac{2sin2x}{2x}×\lim_{x\to0}\frac{1}{\frac{e^x-1}{x}}



Aslim_{x\to0}\frac{a^x-1}{x}=loga andlim_{x\to0}\frac{sinx}{x}=1 , we get,

=2×\frac{1}{loge}

= 2

Question 17.\lim_{x\to0}\frac{e^{sinx}-1}{x}

Solution:

We have,

=\lim_{x\to0}\frac{e^{sinx}-1}{x}

=\lim_{x\to0}\left(\frac{e^{sinx}-1}{sinx}×\frac{sinx}{x}\right)

=\lim_{x\to0}\left(\frac{e^{sinx}-1}{sinx}\right)×\lim_{x\to0}\left(\frac{sinx}{x}\right)



Aslim_{x\to0}\frac{a^x-1}{x}=loga andlim_{x\to0}\frac{sinx}{x}=1 , we get,

= log e × 1

= 1

Question 18.\lim_{x\to0}\frac{e^{2x}-e^x}{sin2x}

Solution:

We have,

=\lim_{x\to0}\frac{e^{2x}-e^x}{sin2x}

=\lim_{x\to0}\frac{e^{2x}-1-(e^x-1)}{sin2x}

=\lim_{x\to0}\left(\frac{e^{2x}-1}{sin2x}-\frac{e^x-1}{sin2x}\right)

=\lim_{x\to0}\left(\frac{e^{2x}-1}{sin2x}\right)-\lim_{x\to0}\left(\frac{e^x-1}{sin2x}\right)

=\lim_{x\to0}\left(\frac{\frac{e^{2x}-1}{2x}}{\frac{sin2x}{2x}}\right)-\lim_{x\to0}\left(\frac{\frac{e^x-1}{2x}}{\frac{sin2x}{2x}}\right)



Aslim_{x\to0}\frac{a^x-1}{x}=loga andlim_{x\to0}\frac{sinx}{x}=1 , we get,

= 1 −\frac{1}{2}

=\frac{1}{2}

Question 19.\lim_{x\to0}\frac{logx-loga}{x-a}

Solution:

We have,

=\lim_{x\to0}\frac{logx-loga}{x-a}

=\lim_{x\to0}\frac{log\frac{x}{a}}{x-a}

=\lim_{x\to0}\frac{log\frac{x}{a}}{a(\frac{x}{a}-1)}

Let h = x/a − 1. We get,

=\lim_{x\to0}\frac{log(h+1)}{ah}



We know,lim_{x\to0}\frac{log(1+x)}{x}=1 . So, we have,

=\frac{1}{a}\lim_{x\to0}\frac{log(h+1)}{h}

=\frac{1}{a}

Question 20.\lim_{x\to0}\frac{log(a+x)-log(a-x)}{x}

Solution:

We have,

=\lim_{x\to0}\frac{log(a+x)-log(a-x)}{x}

=\lim_{x\to0}\frac{log(\frac{a+x}{a-x})}{x}

=\lim_{x\to0}\frac{log(\frac{a-x+2x}{a-x})}{x}

=\lim_{x\to0}\frac{log(1+\frac{2x}{a-x})}{x}

=\lim_{x\to0}\left(\frac{log(1+\frac{2x}{a-x})}{\frac{2x}{a-x}}×\frac{2}{a-x}\right)



=\lim_{x\to0}\left(\frac{log(1+\frac{2x}{a-x})}{\frac{2x}{a-x}}\right)×\lim_{x\to0}\left(\frac{2}{a-x}\right)

We know,lim_{x\to0}\frac{log(1+x)}{x}=1 . So, we have,

=\lim_{x\to0}\left(\frac{2}{a-x}\right)

=\frac{2}{a}

Question 21.\lim_{x\to0}\frac{log(2+x)+log(0.5)}{x}

Solution:

We have,

=\lim_{x\to0}\frac{log(2+x)+log(0.5)}{x}

=\lim_{x\to0}\frac{log(2+x)+log(\frac{1}{2})}{x}

=\lim_{x\to0}\frac{log(1+\frac{x}{2})}{x}

=\lim_{x\to0}\frac{log(1+\frac{x}{2})}{2×\frac{x}{2}}



We know,lim_{x\to0}\frac{log(1+x)}{x}=1 . So, we have,

=\frac{1}{2}

Question 22.\lim_{x\to0}\frac{log(a+x)-loga}{x}

Solution:

We have,

=\lim_{x\to0}\frac{log(a+x)-loga}{x}

=\lim_{x\to0}\frac{log(\frac{a+x}{a})}{x}

=\lim_{x\to0}\frac{log(1+\frac{x}{a})}{x}

=\lim_{x\to0}\frac{log(1+\frac{x}{a})}{\frac{x}{a}×a}

We know,lim_{x\to0}\frac{log(1+x)}{x}=1 . So, we have,

=\frac{1}{a}



Question 23.\lim_{x\to0}\frac{log(3+x)-log(3-x)}{x}

Solution:

We have,

=\lim_{x\to0}\frac{log(3+x)-log(3-x)}{x}

=\lim_{x\to0}\frac{log(\frac{3+x}{3-x})}{x}

=\lim_{x\to0}\frac{log(\frac{3-x+2x}{3-x})}{x}

=\lim_{x\to0}\frac{log(1+\frac{2x}{3-x})}{x}

=\lim_{x\to0}\left(\frac{log(1+\frac{2x}{3-x})}{\frac{2x}{3-x}}×\frac{2}{3-x}\right)

=\lim_{x\to0}\left(\frac{log(1+\frac{2x}{3-x})}{\frac{2x}{3-x}}\right)×\lim_{x\to0}\left(\frac{2}{3-x}\right)

We know,lim_{x\to0}\frac{log(1+x)}{x}=1 . So, we have,

=\lim_{x\to0}\left(\frac{2}{3-x}\right)



=\frac{2}{3}

Question 24.\lim_{x\to0}\frac{8^x-2^x}{x}

Solution:

We have,

=\lim_{x\to0}\frac{8^x-2^x}{x}

=\lim_{x\to0}\frac{8^x-1-(2^x-1)}{x}

=\lim_{x\to0}\left(\frac{8^x-1}{x}-\frac{2^x-1}{x}\right)

=\lim_{x\to0}\left(\frac{8^x-1}{x}\right)-\lim_{x\to0}\left(\frac{2^x-1}{x}\right)

Aslim_{x\to0}\frac{a^x-1}{x}=loga , we get,

= log 8 − log 2

=log(\frac{8}{2})



= log 4

Question 25.\lim_{x\to0}\frac{x(2^x-1)}{cosx}

Solution:

We have,

=\lim_{x\to0}\frac{x(2^x-1)}{cosx}

=\lim_{x\to0}\frac{x(2^x-1)}{2sin^2\frac{x}{2}}

=\lim_{x\to0}\left(\frac{2^x-1}{x}\right)×\lim_{x\to0}\left(\frac{x^2}{\frac{x^2}{2}\left(\frac{sin\frac{x}{2}}{\frac{x}{2}}\right)^2}\right)

Aslim_{x\to0}\frac{a^x-1}{x}=loga andlim_{x\to0}\frac{sinx}{x}=1 , we get,

= (log 2) × 2

= 2 log 2

= log 4

Question 26.\lim_{x\to0}\frac{\sqrt{1+x}-1}{log(1+x)}

Solution:

We have,

=\lim_{x\to0}\frac{\sqrt{1+x}-1}{log(1+x)}

=\lim_{x\to0}\frac{(\sqrt{1+x}-1)(\sqrt{1+x}+1)}{log(1+x)(\sqrt{1+x}+1)}

=\lim_{x\to0}\frac{1+x-1}{log(1+x)(\sqrt{1+x}+1)}

=\lim_{x\to0}\frac{x}{log(1+x)(\sqrt{1+x}+1)}

=\lim_{x\to0}\frac{1}{\frac{log(1+x)}{x}(\sqrt{1+x}+1)}

=\lim_{x\to0}\frac{1}{\frac{log(1+x)}{x}}×\lim_{x\to0}\frac{1}{(\sqrt{1+x}+1)}

We know,lim_{x\to0}\frac{log(1+x)}{x}=1 . So, we have,

=\frac{1}{1+1}



=\frac{1}{2}

Question 27.\lim_{x\to0}\frac{log|1+x^3|}{sin^3x}

Solution:

We have,

=\lim_{x\to0}\frac{log|1+x^3|}{sin^3x}

=\lim_{x\to0}\frac{\frac{log|1+x^3|}{x^3}}{\frac{sin^3x}{x^3}}

=\lim_{x\to0}\frac{\frac{log|1+x^3|}{x^3}}{\left(\frac{sinx}{x}\right)^3}

=\frac{\lim_{x\to0}\frac{log|1+x^3|}{x^3}}{\lim_{x\to0}\left(\frac{sinx}{x}\right)^3}

We know,lim_{x\to0}\frac{log(1+x)}{x}=1 andlim_{x\to0}\frac{sinx}{x}=1 . So, we get,

= 1

Question 28. lim_{x\to\frac{π}{2}}\frac{a^{cotx}-a^{cosx}}{cotx-cosx}

Solution:



We have,

=lim_{x\to\frac{π}{2}}\left[\frac{a^{cotx}-a^{cosx}}{cotx-cosx}\right]

=lim_{x\to\frac{π}{2}}a^{cosx}\left[\frac{a^{cotx-cosx}-1}{cotx-cosx}\right]

We know,lim_{x\to0}\frac{log(1+x)}{x}=1 . So, we have,

=a^{cos\frac{π}{2}}×loga

= a0 × log a

= log a

Question 29.lim_{x\to0}\frac{e^x-1}{\sqrt{1-cosx}}

Solution:

We have,

=lim_{x\to0}\frac{e^x-1}{\sqrt{1-cosx}}

=lim_{x\to0}\frac{(e^x-1)(\sqrt{1+cosx})}{(\sqrt{1-cosx})(\sqrt{1+cosx})}

=lim_{x\to0}\frac{(e^x-1)(\sqrt{1+cosx})}{\sqrt{1-cos^2x}}

=lim_{x\to0}\frac{(e^x-1)(\sqrt{1+cosx})}{\sqrt{sin^2x}}

=lim_{x\to0}\frac{(e^x-1)(\sqrt{1+cosx})}{sinx}

As numerator and denominator are both zero for x = 0, therefore limit cannot exist.

Question 30. lim_{x\to0}\frac{e^x-e^5}{x-5}

Solution:

We have,

=lim_{x\to0}\frac{e^x-e^5}{x-5}

Let x = h + 5. We get,

=lim_{h\to0}\frac{e^{h+5}-e^5}{h+5-5}



=lim_{h\to0}\frac{e^{h+5}-e^5}{h}

=e^5lim_{h\to0}\frac{e^h-1}{h}

We know,lim_{x\to0}\frac{a^x-1}{x}=loga . So, we have,

= e5 × log e

= e5

Attention reader! All those who say programming isn’t for kids, just haven’t met the right mentors yet. Join the  Demo Class for First Step to Coding Coursespecifically designed for students of class 8 to 12. 

The students will get to learn more about the world of programming in these free classes which will definitely help them in making a wise career choice in the future.




My Personal Notes arrow_drop_up
Recommended Articles
Page :