Question 1. Limx→∞{(3x – 1)(4x – 2)}/{(x + 8)(x – 1)}.
Solution:
We have,
Limx→∞{(3x – 1)(4x – 2)}/{(x + 8)(x – 1)}
= 
= 
When x → ∞, (1/x) → 0.
= (3 × 4)/(1 × 1)
= 12
Question 2. Limx→∞{(3x3 – 4x2 + 6x – 1)}/{(2x3 + x2 – 5x + 7)}.
Solution:
We have,
Limx→∞{(3x3 – 4x2 + 6x – 1)}/{(2x3 + x2 – 5x + 7)}
=
=
When x → ∞, (1/x), (1/x2), (1/x3) → 0.
= 3/2
Question 3. Limx→∞{(5x3 – 6)}/{√(9 + 4x6)}.
Solution:
We have,
Limx→∞{(5x3 – 6)}/{√(9 + 4x6)}
=
= 
When x → ∞, (1/x), (1/x3) → 0.
= 5/√4
= 5/2
Question 4. Limx→∞{√(x2 + cx) – x}
Solution:
We have,
Limx→∞{√(x2+cx)-x}
On rationalizing numerator, we get
= Limx→∞{(x2 + cx) – x2}/{√(x2 + cx) + x}
= Limx→∞(cx)/{√(x2 + cx) + x}
= Limx→∞(cx)/[x{√(x + c/x) + 1}]
= Limx→∞(c)/{√(1 + c/x) + 1}
When x → ∞, (1/x) → 0.
= c/(√1 + 1)
= c/2
Question 5. Limx→∞{√(x + 1) – √x}
Solution:
We have,
Limx→∞{√(x + 1) – √x}
On rationalizing numerator, we get
= Limx→∞{(x+1)-x}/{√(x+1)+√x}
= Limx→∞(1)/{√(x+1)+√x}
= 
When x → ∞, (1/x) → 0.
= 0
Question 6. Limx→∞{√(x2 + 7x) – x}
Solution:
We have,
Limx→∞{√(x2 + 7x) – x}
On rationalizing numerator, we get
= Limx→∞{(x2+7x)-x2}/{√(x2+7x)+x}
= Limx→∞(7x)/{√(x2+7x)+x}
=![Rendered by QuickLaTeX.com \lim_{x\to∞}\frac{7x}{x[\sqrt{(1+\frac{7}{x}})+1]}](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-146289dfc9655e2d3430127a8678f62e_l3.png)
=![Rendered by QuickLaTeX.com \lim_{x\to∞}\frac{7}{[\sqrt{(1+\frac{7}{x}})+1]}](https://www.geeksforgeeks.org/wp-content/ql-cache/quicklatex.com-149a929c04a05b14839e13abcc97e5e6_l3.png)
When x → ∞, (1/x) → 0.
= 7/(√1 + 1)
= 7/2
Question 7. Limx→∞(x)/{√(4x2 + 1) – 1}
Solution:
We have,
Limx→∞(x)/{√(4x2 + 1) – 1}
Rationalising denominator.
= Limx→∞[x{√(4x2 + 1) + 1}]/{(4x2 + 1) – 1}
= Limx→∞[x{√(4x2 + 1) + 1}]/(4x2)
= Limx→∞[{√(4x2 + 1) + 1}]/(4x)
=
When x → ∞, (1/x2) → 0.
= √4/4
= 2/4
= 1/2
Question 8. Limn→∞(n2)/{1 + 2 + 3 + 4 + ……………. + n}
Solution:
We have,
Limn→∞(n2)/{1 + 2 + 3 + 4 + ……………. + n}
=
= Limn→∞(2n)/(n+1)
= Limn→∞(2)/(1+1/n)
When n → ∞, (1/n) → 0
= 2/(1 + 0)
= 2
Question 9. Limx→∞(3x-1 + 4x-2)/(5x-1 + 6x-2)
Solution:
We have,
Limx→∞(3x-1 + 4x-2)/(5x-1 + 6x-2)
= 
= 
When x → ∞, (1/x) → 0.
= 3/5
Question 10. Limx→∞{√(x2 + a2) – √(x2 + b2)}/{√(x2 + c2) – √(x2 + d2)}
Solution:
We have,
Limx→∞{√(x2 + a2) – √(x2 + b2)}/{√(x2 + c2) – √(x2 + d2)}
On rationalizing numerator and denominator, we get
=
=
=
=
When x → ∞, (1/x2) → 0.
=
= (a2 – b2)/(c2 – d2)
Question 11. Limn→∞{(n + 2)! + (n + 1)!}/{(n + 2)! – (n + 1)!}.
Solution:
We have,
Limn→∞{(n + 2)! + (n + 1)!}/{(n + 2)! – (n + 1)!}
= Limn→∞{(n + 2)(n + 1)! + (n + 1)!}/{(n + 2)(n + 1)! – (n + 1)!}
= Limn→∞[(n + 1)!{(n + 2) + 1}]/[(n + 1)!{(n + 2) – 1}]
= Limn→∞(n + 3)/(n + 1)
= Limn→∞[n(1 + 3/n)]/[n(1 + 1/n)]
When n → ∞, (1/n) → 0.
= 1/1
= 1
Question 12. Limx→∞[x{√(x2 + 1) – √(x2 – 1)}]
Solution:
We have,
Limx→∞[x{√(x2 + 1) – √(x2 – 1)}]
On rationalizing numerator, we get
= Limx→∞[x{(x2 + 1) – (x2 – 1)}]/{√(x2 + 1) + √(x2 – 1)}
= Limx→∞(2x)/{√(x2 + 1) + √(x2 – 1)}
= Limx→∞(2x)/[x{√(1 + 1/x2) + √(1 – 1/x2)}]
= Limx→∞(2)/[{√(1 + 1/x2) + √(1 – 1/x2)}]
When x → ∞, (1/x2) → 0.
= 2/(√1 + √1)
= 2/2
= 1
Question 13. Limx→∞[√(x + 2){√(x + 1) – √x}]
Solution:
We have,
Limx→∞[√(x + 2){√(x + 1) – √x}]
On rationalizing numerator, we get
= Limx→∞[√(x + 2){(x + 1) – x}]/{√(x + 1) + √x}
= Limx→∞[√(x + 2)]/{√(x + 1) + √x}
= Limx→∞[x√(1 + 2/x)]/[x{√(1 + 1/x) + √1}]
= Limx→∞[√(1 + 2/x)]/{√(1 + 1/x) + √1}
When x → ∞, (1/x) → 0.
= 1/(√1 + √1)
= 1/2