Sum of squares of binomial coefficients

Given a positive integer n. The task is to find the sum of square of Binomial Coefficient i.e
nC02 + nC12 + nC22 + nC32 + ……… + nCn-22 + nCn-12 + nCn2

Examples:

Input : n = 4
Output : 70

Input : n = 5
Output : 252



Method 1: (Brute Force)
The idea is to generate all the terms of binomial coefficient and find the sum of square of each binomial coefficient.

Below is the implementation of this approach:

C++

// CPP Program to find the sum of square of 
// binomial coefficient.
#include<bits/stdc++.h>
using namespace std;
  
// Return the sum of square of binomial coefficient
int sumofsquare(int n)
{
    int C[n+1][n+1];
    int i, j;
  
    // Calculate value of Binomial Coefficient
    // in bottom up manner
    for (i = 0; i <= n; i++)
    {
        for (j = 0; j <= min(i, n); j++)
        {
            // Base Cases
            if (j == 0 || j == i)
                C[i][j] = 1;
  
            // Calculate value using previously
            // stored values
            else
                C[i][j] = C[i-1][j-1] + C[i-1][j];
        }
    }    
      
    // Finding the sum of square of binomial 
    // coefficient.
    int sum = 0;
    for (int i = 0; i <= n; i++)    
        sum += (C[n][i] * C[n][i]);    
      
    return sum;
}
  
// Driven Program
int main()
{
    int n = 4;    
    cout << sumofsquare(n) << endl;
    return 0;
}  

Java

// Java Program to find the sum of 
// square of binomial coefficient.
import static java.lang.Math.*;
  
class GFG{
          
    // Return the sum of square of 
    // binomial coefficient
    static int sumofsquare(int n)
    {
        int[][] C = new int [n+1][n+1] ;
        int i, j;
      
        // Calculate value of Binomial 
        // Coefficient in bottom up manner
        for (i = 0; i <= n; i++)
        {
            for (j = 0; j <= min(i, n); j++)
            {
                // Base Cases
                if (j == 0 || j == i)
                    C[i][j] = 1;
      
                // Calculate value using 
                //previously stored values
                else
                    C[i][j] = C[i-1][j-1
                             + C[i-1][j];
            }
        
          
        // Finding the sum of square of 
        // binomial coefficient.
        int sum = 0;
        for (i = 0; i <= n; i++) 
            sum += (C[n][i] * C[n][i]); 
          
        return sum;
    }
      
    // Driver function
    public static void main(String[] args)
    {
        int n = 4
          
        System.out.println(sumofsquare(n));
    
}
  
// This code is contributed by 
// Smitha Dinesh Semwal

Python3

# Python Program to find 
# the sum of square of
# binomial coefficient.
  
# Return the sum of 
# square of binomial
# coefficient
def sumofsquare(n) :
      
    C = [[0 for i in range(n + 1)] 
            for j in range(n + 1)]
              
    # Calculate value of 
    # Binomial Coefficient 
    # in bottom up manner
    for i in range(0, n + 1) :
      
        for j in range(0, min(i, n) + 1) :
                      
            # Base Cases
            if (j == 0 or j == i) :
                C[i][j] = 1
  
            # Calculate value 
            # using previously
            # stored values
            else :
                C[i][j] = (C[i - 1][j - 1] +
                           C[i - 1][j])
  
      
    # Finding the sum of 
    # square of binomial 
    # coefficient.
    sum = 0
    for i in range(0, n + 1) :
        sum = sum + (C[n][i] * 
                     C[n][i]) 
      
    return sum
  
  
# Driver Code
n = 4
print (sumofsquare(n), end="\n")
      
# This code is contributed by 
# Manish Shaw(manishshaw1)

C#

// C# Program to find the sum of 
// square of binomial coefficient.
using System;
  
class GFG {
          
    // Return the sum of square of 
    // binomial coefficient
    static int sumofsquare(int n)
    {
        int[,] C = new int [n+1,n+1] ;
        int i, j;
      
        // Calculate value of Binomial 
        // Coefficient in bottom up manner
        for (i = 0; i <= n; i++)
        {
            for (j = 0; j <= Math.Min(i, n); j++)
            {
                // Base Cases
                if (j == 0 || j == i)
                    C[i,j] = 1;
      
                // Calculate value using 
                //previously stored values
                else
                    C[i,j] = C[i-1,j-1] 
                            + C[i-1,j];
            }
        
          
        // Finding the sum of square of 
        // binomial coefficient.
        int sum = 0;
        for (i = 0; i <= n; i++) 
            sum += (C[n,i] * C[n,i]); 
          
        return sum;
    }
      
    // Driver function
    public static void Main()
    {
        int n = 4; 
          
        Console.WriteLine(sumofsquare(n));
    
}
  
// This code is contributed by vt_m.

PHP

<?php
// PHP Program to find the sum of
// square of binomial coefficient.
  
// Return the sum of square of binomial
// coefficient
function sumofsquare($n)
{
    $i; $j;
  
    // Calculate value of Binomial
    // Coefficient in bottom up manner
    for ($i = 0; $i <= $n; $i++)
    {
        for ($j = 0; $j <= min($i, $n); $j++)
        {
              
            // Base Cases
            if ($j == 0 || $j == $i)
                $C[$i][$j] = 1;
  
            // Calculate value using previously
            // stored values
            else
                $C[$i][$j] = $C[$i-1][$j-1]
                                + $C[$i-1][$j];
        }
    
      
    // Finding the sum of square of binomial 
    // coefficient.
    $sum = 0;
    for ($i = 0; $i <= $n; $i++) 
        $sum += ($C[$n][$i] * $C[$n][$i]); 
      
    return $sum;
}
  
// Driven Program
    $n = 4; 
    echo sumofsquare($n), "\n";
      
// This code is contributed by ajit
?>


Output:

70

Method 2: (Using Formula)
^nC^2_0 + ^nC^2_1 + ^nC^2_2 + .... + ^nC^2_n-1 + ^nC^2_n
= ^2nC_n
= \frac{(2n)!}{(n!)^2}
Proof,



We know,
(1 + x)n = nC0 + nC1 x + nC2 x2 + ......... + nCn-1 xn-1 + nCn-1 xn
Also,
(x + 1)n = nC0 xn + nC1 xn-1 + nC2 xn-2 + ......... + nCn-1 x + nCn

Multiplying above two equations,
(1 + x)2n = [nC0 + nC1 x + nC2 x2 + ......... + nCn-1 xn-1 + nCn-1 xn] X 
            [nC0 xn + nC1 xn-1 + nC2 xn-2 + ......... + nCn-1 x + nCn]

Equating coefficients of xn on both sides, we get
2nCn = nC02 + nC12 + nC22 + nC32 + ......... + nCn-22 + nCn-12 + nCn2

Hence, sum of the squares of coefficients = 2nCn = (2n)!/(n!)2.

Also, (2n)!/(n!)2 = (2n * (2n – 1) * (2n – 2) * ….. * (n+1))/(n * (n – 1) * (n – 2) *….. * 1).

Below is the implementation of this approach:

C++

// CPP Program to find the sum of square of 
// binomial coefficient.
#include<bits/stdc++.h>
using namespace std;
  
// function to return product of number 
// from start to end.
int factorial(int start, int end)
{
    int res = 1;
    for (int i = start; i <= end; i++)
        res *= i;
          
    return res;
}
  
// Return the sum of square of binomial
// coefficient
int sumofsquare(int n)
{
    return factorial(n+1, 2*n)/factorial(1, n);
}
  
// Driven Program
int main()
{
    int n = 4;    
    cout << sumofsquare(n) << endl;
    return 0;

Java

// Java Program to find the sum of square of 
// binomial coefficient.
class GFG{
      
    // function to return product of number 
    // from start to end.
    static int factorial(int start, int end)
    {
        int res = 1;
        for (int i = start; i <= end; i++)
            res *= i;
              
        return res;
    }
      
    // Return the sum of square of binomial
    // coefficient
    static int sumofsquare(int n)
    {
        return factorial(n+1, 2*n)/factorial(1, n);
    }
      
    // Driven Program
    public static void main(String[] args)
    {
        int n = 4
        System.out.println(sumofsquare(n));
    
  
// This code is contributed by
// Smitha DInesh Semwal

Python

# Python 3 Program to find the sum of 
# square of binomial coefficient.
  
# function to return product of number 
# from start to end.
def factorial(start, end):
  
    res = 1
      
    for i in range(start, end + 1):
        res *= i
          
    return res
  
# Return the sum of square of binomial
# coefficient
def sumofsquare(n):
  
    return int(factorial(n + 1, 2 * n)
                     /factorial(1, n))
  
# Driven Program
  
n = 4
print(sumofsquare(n))
  
  
# This code is contributed by
# Smitha Dinesh Semwal

C#

// C# Program to find the sum of square of 
// binomial coefficient.
using System;
  
class GFG {
      
    // function to return product of number 
    // from start to end.
    static int factorial(int start, int end)
    {
        int res = 1;
          
        for (int i = start; i <= end; i++)
            res *= i;
              
        return res;
    }
      
    // Return the sum of square of binomial
    // coefficient
    static int sumofsquare(int n)
    {
        return factorial(n+1, 2*n)/factorial(1, n);
    }
      
    // Driven Program
    public static void Main()
    {
        int n = 4; 
          
        Console.WriteLine(sumofsquare(n));
    
  
// This code is contributed by vt_m.

PHP

<?php
// PHP Program to find the sum 
// of square of binomial coefficient.
  
// function to return 
// product of number 
// from start to end.
function factorial($start, $end)
{
    $res = 1;
    for ($i = $start
         $i <= $end; $i++)
        $res *= $i;
          
    return $res;
}
  
// Return the sum of 
// square of binomial
// coefficient
function sumofsquare($n)
{
    return factorial($n + 1, 
                     2 * $n) / 
           factorial(1, $n);
}
  
// Driver Code
$n = 4; 
echo sumofsquare($n), "\n";
      
// This code is contributed by ajit
?>


Output:

70


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : jit_t, manishshaw1