# N-th root of a number

• Difficulty Level : Hard
• Last Updated : 13 Jul, 2021

Given two numbers N and A, find N-th root of A. In mathematics, Nth root of a number A is a real number that gives A, when we raise it to integer power N. These roots are used in Number Theory and other advanced branches of mathematics.
Examples:

```Input : A = 81
N = 4
Output : 3
3^4 = 81```

Recommended Practice

As this problem involves a real valued function A^(1/N) we can solve this using Newton’s method, which starts with an initial guess and iteratively shift towards the result.
We can derive a relation between two consecutive values of iteration using Newton’s method as follows,

```according to newton’s method
x(K+1) = x(K) – f(x) / f’(x)
here    f(x)  = x^(N) – A
so    f’(x) = N*x^(N - 1)
and     x(K) denoted the value of x at Kth iteration
putting the values and simplifying we get,
x(K + 1) = (1 / N) * ((N - 1) * x(K) + A / x(K) ^ (N - 1))```

Using above relation, we can solve the given problem. In below code we iterate over values of x, until difference between two consecutive values of x become lower than desired accuracy.
Below is the implementation of above approach:

## C++

 `// C++ program to calculate Nth root of a number``#include ``using` `namespace` `std;` `//  method returns Nth power of A``double` `nthRoot(``int` `A, ``int` `N)``{``    ``// initially guessing a random number between``    ``// 0 and 9``    ``double` `xPre = ``rand``() % 10;` `    ``//  smaller eps, denotes more accuracy``    ``double` `eps = 1e-3;` `    ``// initializing difference between two``    ``// roots by INT_MAX``    ``double` `delX = INT_MAX;` `    ``//  xK denotes current value of x``    ``double` `xK;` `    ``//  loop until we reach desired accuracy``    ``while` `(delX > eps)``    ``{``        ``//  calculating current value from previous``        ``// value by newton's method``        ``xK = ((N - 1.0) * xPre +``              ``(``double``)A/``pow``(xPre, N-1)) / (``double``)N;``        ``delX = ``abs``(xK - xPre);``        ``xPre = xK;``    ``}` `    ``return` `xK;``}` `//    Driver code to test above methods``int` `main()``{``    ``int` `N = 4;``    ``int` `A = 81;` `    ``double` `nthRootValue = nthRoot(A, N);``    ``cout << ``"Nth root is "` `<< nthRootValue << endl;` `    ``/*``        ``double Acalc = pow(nthRootValue, N);``        ``cout << "Error in difference of powers "``             ``<< abs(A - Acalc) << endl;``    ``*/` `    ``return` `0;``}`

## Java

 `// Java program to calculate Nth root of a number``class` `GFG``{``    ` `    ``// method returns Nth power of A``    ``static` `double` `nthRoot(``int` `A, ``int` `N)``    ``{``        ` `        ``// initially guessing a random number between``        ``// 0 and 9``        ``double` `xPre = Math.random() % ``10``;``    ` `        ``// smaller eps, denotes more accuracy``        ``double` `eps = ``0.001``;``    ` `        ``// initializing difference between two``        ``// roots by INT_MAX``        ``double` `delX = ``2147483647``;``    ` `        ``// xK denotes current value of x``        ``double` `xK = ``0.0``;``    ` `        ``// loop until we reach desired accuracy``        ``while` `(delX > eps)``        ``{``            ``// calculating current value from previous``            ``// value by newton's method``            ``xK = ((N - ``1.0``) * xPre +``            ``(``double``)A / Math.pow(xPre, N - ``1``)) / (``double``)N;``            ``delX = Math.abs(xK - xPre);``            ``xPre = xK;``        ``}``    ` `        ``return` `xK;``    ``}``    ` `    ``// Driver code``    ``public` `static` `void` `main (String[] args)``    ``{``        ``int` `N = ``4``;``        ``int` `A = ``81``;``    ` `        ``double` `nthRootValue = nthRoot(A, N);``        ``System.out.println(``"Nth root is "``        ``+ Math.round(nthRootValue*``1000.0``)/``1000.0``);``    ` `        ``/*``            ``double Acalc = pow(nthRootValue, N);``            ``cout << "Error in difference of powers "``                ``<< abs(A - Acalc) << endl;``        ``*/``    ``}``}` `// This code is contributed by Anant Agarwal.`

## Python3

 `# Python3 program to calculate``# Nth root of a number``import` `math``import` `random` `# method returns Nth power of A``def` `nthRoot(A,N):` `    ``# initially guessing a random number between``    ``# 0 and 9``    ``xPre ``=` `random.randint(``1``,``101``) ``%` `10`` ` `    ``#  smaller eps, denotes more accuracy``    ``eps ``=` `0.001`` ` `    ``# initializing difference between two``    ``# roots by INT_MAX``    ``delX ``=` `2147483647`` ` `    ``#  xK denotes current value of x``    ``xK``=``0.0`` ` `    ``#  loop until we reach desired accuracy``    ``while` `(delX > eps):` `        ``# calculating current value from previous``        ``# value by newton's method``        ``xK ``=` `((N ``-` `1.0``) ``*` `xPre ``+``              ``A``/``pow``(xPre, N``-``1``)) ``/``N``        ``delX ``=` `abs``(xK ``-` `xPre)``        ``xPre ``=` `xK;``        ` `    ``return` `xK` `# Driver code``N ``=` `4``A ``=` `81``nthRootValue ``=` `nthRoot(A, N)` `print``(``"Nth root is "``, nthRootValue)` `## Acalc = pow(nthRootValue, N);``## print("Error in difference of powers ",``##             abs(A - Acalc))` `# This code is contributed``# by Anant Agarwal.`

## C#

 `// C# program to calculate Nth root of a number``using` `System;``class` `GFG``{``    ` `    ``// method returns Nth power of A``    ``static` `double` `nthRoot(``int` `A, ``int` `N)``    ``{``        ``Random rand = ``new` `Random();``        ``// initially guessing a random number between``        ``// 0 and 9``        ``double` `xPre = rand.Next(10);;``    ` `        ``// smaller eps, denotes more accuracy``        ``double` `eps = 0.001;``    ` `        ``// initializing difference between two``        ``// roots by INT_MAX``        ``double` `delX = 2147483647;``    ` `        ``// xK denotes current value of x``        ``double` `xK = 0.0;``    ` `        ``// loop until we reach desired accuracy``        ``while` `(delX > eps)``        ``{``            ``// calculating current value from previous``            ``// value by newton's method``            ``xK = ((N - 1.0) * xPre +``            ``(``double``)A / Math.Pow(xPre, N - 1)) / (``double``)N;``            ``delX = Math.Abs(xK - xPre);``            ``xPre = xK;``        ``}``    ` `        ``return` `xK;``    ``}``    ` `    ``// Driver code``    ``static` `void` `Main()``    ``{``        ``int` `N = 4;``        ``int` `A = 81;``    ` `        ``double` `nthRootValue = nthRoot(A, N);``        ``Console.WriteLine(``"Nth root is "``+Math.Round(nthRootValue*1000.0)/1000.0);``    ``}``}` `// This code is contributed by mits`

## PHP

 ` ``\$eps``)``    ``{``        ``// calculating current``        ``// value from previous``        ``// value by newton's method``        ``\$xK` `= ((int)(``\$N` `- 1.0) *``                     ``\$xPre` `+ ``\$A` `/``                     ``(int)pow(``\$xPre``,``                              ``\$N` `- 1)) / ``\$N``;``        ``\$delX` `= ``abs``(``\$xK` `- ``\$xPre``);``        ``\$xPre` `= ``\$xK``;``    ``}` `    ``return` `floor``(``\$xK``);``}` `// Driver code``\$N` `= 4;``\$A` `= 81;` `\$nthRootValue` `= nthRoot(``\$A``, ``\$N``);``echo` `"Nth root is "` `,``      ``\$nthRootValue` `,``"\n"``;` `// This code is contributed by akt_mit``?>`

## Javascript

 ``

Output:

`Nth root is 3`

This article is contributed by Utkarsh Trivedi. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

My Personal Notes arrow_drop_up