Given a number n, print all primes smaller than or equal to n. It is also given that n is a small number.
Example:
Input : n =10
Output : 2 3 5 7
Input : n = 20
Output: 2 3 5 7 11 13 17 19
The sieve of Eratosthenes is one of the most efficient ways to find all primes smaller than n when n is smaller than 10 million or so (Ref Wiki).
Following is the algorithm to find all the prime numbers less than or equal to a given integer n by the Eratosthene’s method:
When the algorithm terminates, all the numbers in the list that are not marked are prime.
Explanation with Example:
Let us take an example when n = 50. So we need to print all prime numbers smaller than or equal to 50.
We create a list of all numbers from 2 to 50.

According to the algorithm we will mark all the numbers which are divisible by 2 and are greater than or equal to the square of it.

Now we move to our next unmarked number 3 and mark all the numbers which are multiples of 3 and are greater than or equal to the square of it.

We move to our next unmarked number 5 and mark all multiples of 5 and are greater than or equal to the square of it.

We continue this process and our final table will look like below:

So the prime numbers are the unmarked ones: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47.
Thanks to Krishan Kumar for providing the above explanation.
Implementation:
Following is the implementation of the above algorithm. In the following implementation, a boolean array arr[] of size n is used to mark multiples of prime numbers.
C++
#include <bits/stdc++.h>
using namespace std;
void SieveOfEratosthenes( int n)
{
bool prime[n + 1];
memset (prime, true , sizeof (prime));
for ( int p = 2; p * p <= n; p++) {
if (prime[p] == true ) {
for ( int i = p * p; i <= n; i += p)
prime[i] = false ;
}
}
for ( int p = 2; p <= n; p++)
if (prime[p])
cout << p << " " ;
}
int main()
{
int n = 30;
cout << "Following are the prime numbers smaller "
<< " than or equal to " << n << endl;
SieveOfEratosthenes(n);
return 0;
}
|
C
#include <stdio.h>
#include <stdbool.h>
#include <string.h>
void SieveOfEratosthenes( int n)
{
bool prime[n + 1];
memset (prime, true , sizeof (prime));
for ( int p = 2; p * p <= n; p++) {
if (prime[p] == true ) {
for ( int i = p * p; i <= n; i += p)
prime[i] = false ;
}
}
for ( int p = 2; p <= n; p++)
if (prime[p])
printf ( "%d " ,p);
}
int main()
{
int n = 30;
printf ( "Following are the prime numbers smaller than or equal to %d \n" , n);
SieveOfEratosthenes(n);
return 0;
}
|
Java
class SieveOfEratosthenes {
void sieveOfEratosthenes( int n)
{
boolean prime[] = new boolean [n + 1 ];
for ( int i = 0 ; i <= n; i++)
prime[i] = true ;
for ( int p = 2 ; p * p <= n; p++) {
if (prime[p] == true ) {
for ( int i = p * p; i <= n; i += p)
prime[i] = false ;
}
}
for ( int i = 2 ; i <= n; i++) {
if (prime[i] == true )
System.out.print(i + " " );
}
}
public static void main(String args[])
{
int n = 30 ;
System.out.print( "Following are the prime numbers " );
System.out.println( "smaller than or equal to " + n);
SieveOfEratosthenes g = new SieveOfEratosthenes();
g.sieveOfEratosthenes(n);
}
}
|
Python3
def SieveOfEratosthenes(n):
prime = [ True for i in range (n + 1 )]
p = 2
while (p * p < = n):
if (prime[p] = = True ):
for i in range (p * p, n + 1 , p):
prime[i] = False
p + = 1
for p in range ( 2 , n + 1 ):
if prime[p]:
print (p)
if __name__ = = '__main__' :
n = 20
print ( "Following are the prime numbers smaller" ),
print ( "than or equal to" , n)
SieveOfEratosthenes(n)
|
C#
using System;
namespace prime {
public class GFG {
public static void SieveOfEratosthenes( int n)
{
bool [] prime = new bool [n + 1];
for ( int i = 0; i <= n; i++)
prime[i] = true ;
for ( int p = 2; p * p <= n; p++)
{
if (prime[p] == true )
{
for ( int i = p * p; i <= n; i += p)
prime[i] = false ;
}
}
for ( int i = 2; i <= n; i++)
{
if (prime[i] == true )
Console.Write(i + " " );
}
}
public static void Main()
{
int n = 30;
Console.WriteLine(
"Following are the prime numbers" );
Console.WriteLine( "smaller than or equal to " + n);
SieveOfEratosthenes(n);
}
}
}
|
PHP
<?php
function SieveOfEratosthenes( $n )
{
$prime = array_fill (0, $n +1, true);
for ( $p = 2; $p * $p <= $n ; $p ++)
{
if ( $prime [ $p ] == true)
{
for ( $i = $p * $p ; $i <= $n ; $i += $p )
$prime [ $i ] = false;
}
}
for ( $p = 2; $p <= $n ; $p ++)
if ( $prime [ $p ])
echo $p . " " ;
}
$n = 30;
echo "Following are the prime numbers "
. "smaller than or equal to " . $n . "\n" ;
SieveOfEratosthenes( $n );
?>
|
Javascript
<script>
function sieveOfEratosthenes(n)
{
prime = Array.from({length: n+1}, (_, i) => true );
for (p = 2; p * p <= n; p++)
{
if (prime[p] == true )
{
for (i = p * p; i <= n; i += p)
prime[i] = false ;
}
}
for (i = 2; i <= n; i++)
{
if (prime[i] == true )
document.write(i + " " );
}
}
var n = 30;
document.write(
"Following are the prime numbers " );
document.write( "smaller than or equal to " + n+ "<br>" );
sieveOfEratosthenes(n);
</script>
|
OutputFollowing are the prime numbers smaller than or equal to 30
2 3 5 7 11 13 17 19 23 29
Time Complexity: O(n*log(log(n)))
Auxiliary Space: O(n)
C++
#include <bitset>
#include <iostream>
using namespace std;
bitset<500001> Primes;
void SieveOfEratosthenes( int n)
{
Primes[0] = 1;
for ( int i = 3; i*i <= n; i += 2) {
if (Primes[i / 2] == 0) {
for ( int j = 3 * i; j <= n; j += 2 * i)
Primes[j / 2] = 1;
}
}
}
int main()
{
int n = 100;
SieveOfEratosthenes(n);
for ( int i = 1; i <= n; i++) {
if (i == 2)
cout << i << ' ' ;
else if (i % 2 == 1 && Primes[i / 2] == 0)
cout << i << ' ' ;
}
return 0;
}
|
Java
import java.io.*;
public class GFG {
static int [] Primes = new int [ 500001 ];
static void SieveOfEratosthenes( int n)
{
Primes[ 0 ] = 1 ;
for ( int i = 3 ; i * i <= n; i += 2 ) {
if (Primes[i / 2 ] == 0 ) {
for ( int j = 3 * i; j <= n; j += 2 * i)
Primes[j / 2 ] = 1 ;
}
}
}
public static void main(String[] args)
{
int n = 100 ;
SieveOfEratosthenes(n);
for ( int i = 1 ; i <= n; i++) {
if (i == 2 )
System.out.print(i + " " );
else if (i % 2 == 1 && Primes[i / 2 ] == 0 )
System.out.print(i + " " );
}
}
}
|
Python3
Primes = [ 0 ] * 500001
def SieveOfEratosthenes(n) :
Primes[ 0 ] = 1
i = 3
while (i * i < = n) :
if (Primes[i / / 2 ] = = 0 ) :
for j in range ( 3 * i, n + 1 , 2 * i) :
Primes[j / / 2 ] = 1
i + = 2
if __name__ = = "__main__" :
n = 100
SieveOfEratosthenes(n)
for i in range ( 1 , n + 1 ) :
if (i = = 2 ) :
print ( i, end = " " )
elif (i % 2 = = 1 and Primes[i / / 2 ] = = 0 ) :
print ( i, end = " " )
|
C#
using System;
public class GFG {
static int [] Primes = new int [500001];
static void SieveOfEratosthenes( int n)
{
Primes[0] = 1;
for ( int i = 3; i*i <= n; i += 2) {
if (Primes[i / 2] == 0) {
for ( int j = 3 * i; j <= n; j += 2 * i)
Primes[j / 2] = 1;
}
}
}
public static void Main(String[] args) {
int n = 100;
SieveOfEratosthenes(n);
for ( int i = 1; i <= n; i++) {
if (i == 2)
Console.Write(i + " " );
else if (i % 2 == 1 && Primes[i / 2] == 0)
Console.Write(i + " " );
}
}
}
|
Javascript
let Primes = new Array(500001).fill(0);
function SieveOfEratosthenes(n)
{
Primes[0] = 1;
for (let i = 3; i*i <= n; i += 2) {
let flr = Math.floor(i / 2);
if (Primes[flr] == 0) {
for (let j = 3 * i; j <= n; j += 2 * i){
Primes[flr] = 1;
}
}
}
}
let n = 100;
SieveOfEratosthenes(n);
let res = "" ;
for (let i = 1; i <= n; i++) {
let flr = Math.floor(i / 2);
if (i == 2){
res = res + i + " " ;
}
else if (i % 2 == 1 && Primes[flr] == 0){
res = res + i + " " ;
}
}
console.log(res);
|
Output2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97
Time Complexity: O(n*log(log(n)))
Auxiliary Space: O(n)
You may also like to see :