Given a number n, print all primes smaller than n. For example, if the given number is 10, output 2, 3, 5, 7.
A Naive approach is to run a loop from 0 to n-1 and check each number for primeness. A Better Approach is to use Simple Sieve of Eratosthenes.
C++
#include <bits/stdc++.h>
using namespace std;
void simpleSieve( int limit)
{
bool mark[limit];
for ( int i = 0; i<limit; i++) {
mark[i] = true ;
}
for ( int p=2; p*p<limit; p++)
{
if (mark[p] == true )
{
for ( int i=p*p; i<limit; i+=p)
mark[i] = false ;
}
}
for ( int p=2; p<limit; p++)
if (mark[p] == true )
cout << p << " " ;
}
|
Java
static void simpleSieve( int limit)
{
boolean []mark = new boolean [limit];
Arrays.fill(mark, true );
for ( int p = 2 ; p * p < limit; p++)
{
if (mark[p] == true )
{
for ( int i = p * p; i < limit; i += p)
mark[i] = false ;
}
}
for ( int p = 2 ; p < limit; p++)
if (mark[p] == true )
System.out.print(p + " " );
}
|
Python3
def simpleSieve(limit):
mark = [ True for i in range (limit)]
for p in range (p * p, limit - 1 , 1 ):
if (mark[p] = = True ):
for i in range (p * p, limit - 1 , p):
mark[i] = False
for p in range ( 2 , limit - 1 , 1 ):
if (mark[p] = = True ):
print (p, end = " " )
|
C#
static void simpleSieve( int limit)
{
bool []mark = new bool [limit];
Array.Fill(mark, true );
for ( int p = 2; p * p < limit; p++)
{
if (mark[p] == true )
{
for ( int i = p * p; i < limit; i += p)
mark[i] = false ;
}
}
for ( int p = 2; p < limit; p++)
if (mark[p] == true )
Console.Write(p + " " );
}
|
Javascript
<script>
function simpleSieve(limit)
{
var mark = Array(limit).fill( true );
for (p = 2; p * p < limit; p++)
{
if (mark[p] == true )
{
for (i = p * p; i < limit; i += p)
mark[i] = false ;
}
}
for (p = 2; p < limit; p++)
if (mark[p] == true )
document.write(p + " " );
}
</script>
|
C
void simpleSieve( int limit)
{
bool mark[limit];
for ( int i = 0; i<limit; i++) {
mark[i] = true ;
}
for ( int p=2; p*p<limit; p++)
{
if (mark[p] == true )
{
for ( int i=p*p; i<limit; i+=p)
mark[i] = false ;
}
}
for ( int p=2; p<limit; p++)
if (mark[p] == true )
cout << p << " " ;
}
|
Problems with Simple Sieve:
The Sieve of Eratosthenes looks good, but consider the situation when n is large, the Simple Sieve faces the following issues.
- An array of size Θ(n) may not fit in memory
- The simple Sieve is not cached friendly even for slightly bigger n. The algorithm traverses the array without locality of reference
Segmented Sieve
The idea of a segmented sieve is to divide the range [0..n-1] in different segments and compute primes in all segments one by one. This algorithm first uses Simple Sieve to find primes smaller than or equal to √(n). Below are steps used in Segmented Sieve.
- Use Simple Sieve to find all primes up to the square root of ‘n’ and store these primes in an array “prime[]”. Store the found primes in an array ‘prime[]’.
- We need all primes in the range [0..n-1]. We divide this range into different segments such that the size of every segment is at-most √n
- Do following for every segment [low..high]
- Create an array mark[high-low+1]. Here we need only O(x) space where x is a number of elements in a given range.
- Iterate through all primes found in step 1. For every prime, mark its multiples in the given range [low..high].
In Simple Sieve, we needed O(n) space which may not be feasible for large n. Here we need O(√n) space and we process smaller ranges at a time (locality of reference)
Below is the implementation of the above idea.
C++
#include <bits/stdc++.h>
using namespace std;
void simpleSieve( int limit, vector< int > &prime)
{
vector< bool > mark(limit + 1, true );
for ( int p=2; p*p<limit; p++)
{
if (mark[p] == true )
{
for ( int i=p*p; i<limit; i+=p)
mark[i] = false ;
}
}
for ( int p=2; p<limit; p++)
{
if (mark[p] == true )
{
prime.push_back(p);
cout << p << " " ;
}
}
}
void segmentedSieve( int n)
{
int limit = floor ( sqrt (n))+1;
vector< int > prime;
prime.reserve(limit);
simpleSieve(limit, prime);
int low = limit;
int high = 2*limit;
while (low < n)
{
if (high >= n)
high = n;
bool mark[limit+1];
memset (mark, true , sizeof (mark));
for ( int i = 0; i < prime.size(); i++)
{
int loLim = floor (low/prime[i]) * prime[i];
if (loLim < low)
loLim += prime[i];
for ( int j=loLim; j<high; j+=prime[i])
mark[j-low] = false ;
}
for ( int i = low; i<high; i++)
if (mark[i - low] == true )
cout << i << " " ;
low = low + limit;
high = high + limit;
}
}
int main()
{
int n = 100;
cout << "Primes smaller than " << n << ":\n" ;
segmentedSieve(n);
return 0;
}
|
Java
import java.util.Vector;
import static java.lang.Math.sqrt;
import static java.lang.Math.floor;
class Test
{
static void simpleSieve( int limit, Vector<Integer> prime)
{
boolean mark[] = new boolean [limit+ 1 ];
for ( int i = 0 ; i < mark.length; i++)
mark[i] = true ;
for ( int p= 2 ; p*p<limit; p++)
{
if (mark[p] == true )
{
for ( int i=p*p; i<limit; i+=p)
mark[i] = false ;
}
}
for ( int p= 2 ; p<limit; p++)
{
if (mark[p] == true )
{
prime.add(p);
System.out.print(p + " " );
}
}
}
static void segmentedSieve( int n)
{
int limit = ( int ) (floor(sqrt(n))+ 1 );
Vector<Integer> prime = new Vector<>();
simpleSieve(limit, prime);
int low = limit;
int high = 2 *limit;
while (low < n)
{
if (high >= n)
high = n;
boolean mark[] = new boolean [limit+ 1 ];
for ( int i = 0 ; i < mark.length; i++)
mark[i] = true ;
for ( int i = 0 ; i < prime.size(); i++)
{
int loLim = ( int ) (floor(low/prime.get(i)) * prime.get(i));
if (loLim < low)
loLim += prime.get(i);
for ( int j=loLim; j<high; j+=prime.get(i))
mark[j-low] = false ;
}
for ( int i = low; i<high; i++)
if (mark[i - low] == true )
System.out.print(i + " " );
low = low + limit;
high = high + limit;
}
}
public static void main(String args[])
{
int n = 100 ;
System.out.println( "Primes smaller than " + n + ":" );
segmentedSieve(n);
}
}
|
Python3
import math
prime = []
def simpleSieve(limit):
mark = [ True for i in range (limit + 1 )]
p = 2
while (p * p < = limit):
if (mark[p] = = True ):
for i in range (p * p, limit + 1 , p):
mark[i] = False
p + = 1
for p in range ( 2 , limit):
if mark[p]:
prime.append(p)
print (p,end = " " )
def segmentedSieve(n):
limit = int (math.floor(math.sqrt(n)) + 1 )
simpleSieve(limit)
low = limit
high = limit * 2
while low < n:
if high > = n:
high = n
mark = [ True for i in range (limit + 1 )]
for i in range ( len (prime)):
loLim = int (math.floor(low / prime[i]) *
prime[i])
if loLim < low:
loLim + = prime[i]
for j in range (loLim, high, prime[i]):
mark[j - low] = False
for i in range (low, high):
if mark[i - low]:
print (i, end = " " )
low = low + limit
high = high + limit
n = 100
print ( "Primes smaller than" , n, ":" )
segmentedSieve( 100 )
|
C#
using System;
using System.Collections;
class GFG
{
static void simpleSieve( int limit,
ArrayList prime)
{
bool [] mark = new bool [limit + 1];
for ( int i = 0; i < mark.Length; i++)
mark[i] = true ;
for ( int p = 2; p * p < limit; p++)
{
if (mark[p] == true )
{
for ( int i = p * p; i < limit; i += p)
mark[i] = false ;
}
}
for ( int p = 2; p < limit; p++)
{
if (mark[p] == true )
{
prime.Add(p);
Console.Write(p + " " );
}
}
}
static void segmentedSieve( int n)
{
int limit = ( int ) (Math.Floor(Math.Sqrt(n)) + 1);
ArrayList prime = new ArrayList();
simpleSieve(limit, prime);
int low = limit;
int high = 2*limit;
while (low < n)
{
if (high >= n)
high = n;
bool [] mark = new bool [limit + 1];
for ( int i = 0; i < mark.Length; i++)
mark[i] = true ;
for ( int i = 0; i < prime.Count; i++)
{
int loLim = (( int )Math.Floor(( double )(low /
( int )prime[i])) * ( int )prime[i]);
if (loLim < low)
loLim += ( int )prime[i];
for ( int j = loLim; j < high; j += ( int )prime[i])
mark[j-low] = false ;
}
for ( int i = low; i < high; i++)
if (mark[i - low] == true )
Console.Write(i + " " );
low = low + limit;
high = high + limit;
}
}
static void Main()
{
int n = 100;
Console.WriteLine( "Primes smaller than " + n + ":" );
segmentedSieve(n);
}
}
|
Javascript
let res = "" ;
function simpleSieve(limit, prime)
{
let mark = new Array(limit+1).fill( true );
for (let p=2; p*p<limit; p++)
{
if (mark[p] === true )
{
for (let i=p*p; i<limit; i+=p){
mark[i] = false ;
}
}
}
for (let p=2; p<limit; p++)
{
if (mark[p] === true )
{
prime.push(p);
res = res + p + " " ;
}
}
}
function segmentedSieve(n)
{
let limit = Math.floor(Math.sqrt(n))+1;
let prime = new Array(limit);
simpleSieve(limit, prime);
let low = limit;
let high = 2*limit;
while (low < n)
{
if (high >= n){
high = n;
}
let mark = new Array(limit+1).fill( true );
for (let i = 0; i < prime.length; i++)
{
let loLim = Math.floor(low/prime[i]) * prime[i];
if (loLim < low){
loLim += prime[i];
}
for (let j=loLim; j<high; j+=prime[i]){
mark[j-low] = false ;
}
}
for (let i = low; i<high; i++){
if (mark[i - low] == true ){
res = res + i + " " ;
}
}
low = low + limit;
high = high + limit;
}
console.log(res);
}
let n = 100;
console.log( "Primes smaller than" , n);
segmentedSieve(n);
|
OutputPrimes smaller than 100:
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97
Time Complexity : O(n * ln(sqrt(n)))
Auxiliary Space: O(sqrt(n))
Note that time complexity (or a number of operations) by Segmented Sieve is the same as Simple Sieve. It has advantages for large ‘n’ as it has better locality of reference thus allowing better caching by the CPU and also requires less memory space.
This article is contributed by Utkarsh Trivedi. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above