# Moser-de Bruijn Sequence

Given an integer ‘n’, print the first ‘n’ terms of the Moser-de Bruijn Sequence. Moser-de Bruijn sequence is the sequence obtained by adding up the distinct powers of the number 4 (For example, 1, 4, 16, 64, etc).

Examples:

```Input : 5
Output : 0 1 4 5 16

Input : 10
Output : 0 1 4 5 16 17 20 21 64 65```

It is observed that the terms of the sequence follow the recurrence relation :

```1) S(2 * n) = 4 * S(n)
2) S(2 * n + 1) = 4 * S(n) + 1
with S(0) = 0 and S(1) = 1```

It may be noted here that any number which is the sum of non-distinct powers of 4 is not a part of the sequence. For example, 8 is not a part of the sequence because it is formed as the sum of non-distinct powers of 4, which are 4 and 4.
Thus, any number which is not a power of 4 and is present in the sequence must be the sum of the distinct powers of 4.
For example, 21 is a part of the sequence, even though it is not a power of 4, because it is the sum of the distinct powers of 4, which are 1, 4, and 16.

Employ the recurrence relation discussed above to generate the sequence efficiently.

## C++

 `// CPP code to generate first 'n' terms ``// of the Moser-de Bruijn Sequence``#include ``using` `namespace` `std;` `// Function to generate nth term ``// of Moser-de Bruijn Sequence``int` `gen(``int` `n)``{ ``    ``// S(0) = 0``    ``if` `(n == 0)``        ``return` `0;``    ` `    ``// S(1) = 1``    ``else` `if` `(n == 1)``        ``return` `1;``    ` `    ``// S(2 * n) = 4 * S(n)``    ``else` `if` `(n % 2 == 0)``        ``return` `4 * gen(n / 2);``    ` `    ``// S(2 * n + 1) = 4 * S(n) + 1``    ``else` `if` `(n % 2 == 1)``        ``return` `4 * gen(n / 2) + 1;``}` `// Generating the first 'n' terms ``// of Moser-de Bruijn Sequence``void` `moserDeBruijn(``int` `n)``{``    ``for` `(``int` `i = 0; i < n; i++)``        ``cout << gen(i) << ``" "``;``    ``cout << ``"\n"``;``}` `// Driver Code``int` `main()``{``    ``int` `n = 15;``    ``cout << ``"First "` `<< n << ``" terms of "``         ``<< ``"Moser-de Bruijn Sequence : \n"``;``    ``moserDeBruijn(n);``    ``return` `0;``}`

## Java

 `// Java code to generate first 'n' terms ``// of the Moser-de Bruijn Sequence` `class` `GFG ``{``    ` `// Function to generate nth term ``// of Moser-de Bruijn Sequence``public` `static` `int` `gen(``int` `n)``{ ``    ` `    ``// S(0) = 0``    ``if` `(n == ``0``)``        ``return` `0``;``    ` `    ``// S(1) = 1``    ``else` `if` `(n == ``1``)``        ``return` `1``;``    ` `    ``// S(2 * n) = 4 * S(n)``    ``else` `if` `(n % ``2` `== ``0``)``        ``return` `4` `* gen(n / ``2``);``    ` `    ``// S(2 * n + 1) = 4 * S(n) + 1``    ``else` `if` `(n % ``2` `== ``1``)``        ``return` `4` `* gen(n / ``2``) + ``1``;``    ``return` `0``;``}` `// Generating the first 'n' terms ``// of Moser-de Bruijn Sequence``public` `static` `void` `moserDeBruijn(``int` `n)``{``    ``for` `(``int` `i = ``0``; i < n; i++)``        ``System.out.print(gen(i) + ``" "``);``    ``System.out.println();``}` `// Driver Code``public` `static` `void` `main(String args[])``{``    ``int` `n = ``15``;``    ``System.out.println(``"First "` `+ n + ``                       ``" terms of "` `+ ``      ``"Moser-de Bruijn Sequence : "``);``    ``moserDeBruijn(n);``}``}` `// This code is contributed by JaideepPyne.`

## Python3

 `# Python code to generate first ``# 'n' terms of the Moser-de ``# Bruijn Sequence` `# Function to generate nth term``# of Moser-de Bruijn Sequence``def` `gen(n):` `    ``# S(0) = 0``    ``if` `n ``=``=` `0``:``        ``return` `0` `    ``# S(1) = 1``    ``elif` `n ``=``=``1``:``        ``return` `1` `    ``# S(2 * n) = 4 * S(n)``    ``elif` `n ``%` `2` `=``=``0``:``        ``return` `4` `*` `gen(n ``/``/` `2``)` `    ``# S(2 * n + 1) = 4 * S(n) + 1``    ``elif` `n ``%` `2` `=``=` `1``:``        ``return` `4` `*` `gen(n ``/``/` `2``) ``+``1` `# Generating the first 'n' terms``# of Moser-de Bruijn Sequence``def` `moserDeBruijn(n):``    ``for` `i ``in` `range``(n):``        ``print``(gen(i), end ``=` `" "``)` `# Driver Program``n ``=` `15``print``(``"First"``, n, ``"terms of "``,``       ``"Moser-de Bruijn Sequence:"``)``moserDeBruijn(n)` `# This code is contributed by Shrikant13`

## C#

 `// C# code to generate first 'n' terms ``// of the Moser-de Bruijn Sequence``using` `System;` `class` `GFG {``    ` `// Function to generate nth term ``// of Moser-de Bruijn Sequence``public` `static` `int` `gen(``int` `n)``{ ``    ` `    ``// S(0) = 0``    ``if` `(n == 0)``        ``return` `0;``    ` `    ``// S(1) = 1``    ``else` `if` `(n == 1)``        ``return` `1;``    ` `    ``// S(2 * n) = 4 * S(n)``    ``else` `if` `(n % 2 == 0)``        ``return` `4 * gen(n / 2);``    ` `    ``// S(2 * n + 1) = 4 * S(n) + 1``    ``else` `if` `(n % 2 == 1)``        ``return` `4 * gen(n / 2) + 1;``    ``return` `0;``}` `// Generating the first 'n' terms ``// of Moser-de Bruijn Sequence``public` `static` `void` `moserDeBruijn(``int` `n)``{``    ``for` `(``int` `i = 0; i < n; i++)``        ``Console.Write(gen(i) + ``" "``);``        ``Console.WriteLine();``}` `// Driver Code``public` `static` `void` `Main()``{``    ``int` `n = 15;``    ``Console.WriteLine(``"First "` `+ n + ``                    ``" terms of "` `+ ``    ``"Moser-de Bruijn Sequence : "``);``    ``moserDeBruijn(n);``}``}` `// This code is contributed by anuj_67.`

## PHP

 ``

## Javascript

 ``

Output :

```First 15 terms of Moser-de Bruijn Sequence :
0 1 4 5 16 17 20 21 64 65 68 69 80 81 84```

Time complexity: O(log2n)

Auxiliary Space: O(1)

Dynamic Programming Implementation:

## C++

 `// CPP code to generate first 'n' terms ``// of the Moser-de Bruijn Sequence``#include ``using` `namespace` `std;` `// Function to generate nth term ``// of Moser-de Bruijn Sequence``int` `gen(``int` `n)``{ ``    ``int` `S[n+1];` `    ``S[0] = 0;``    ``S[1] = 1;` `    ``for` `(``int` `i = 2; i <= n; i++)``    ``{    ``        ``// S(2 * n) = 4 * S(n)``        ``if` `(i % 2 == 0)``           ``S[i] = 4 * S[i / 2];``    ` `        ``// S(2 * n + 1) = 4 * S(n) + 1``        ``else``           ``S[i] = 4 * S[i / 2] + 1;``    ``}``    ` `    ``return` `S[n];``}` `// Generating the first 'n' terms ``// of Moser-de Bruijn Sequence``void` `moserDeBruijn(``int` `n)``{``    ``for` `(``int` `i = 0; i < n; i++)``        ``cout << gen(i) << ``" "``;``    ``cout << ``"\n"``;``}` `// Driver Code``int` `main()``{``    ``int` `n = 15;``    ``cout << ``"First "` `<< n << ``" terms of "``         ``<< ``"Moser-de Bruijn Sequence : \n"``;``    ``moserDeBruijn(n);``    ``return` `0;``}`

## Java

 `// Java code to generate first 'n' terms ``// of the Moser-de Bruijn Sequence` `class` `GFG ``{``    ` `// Function to generate nth term ``// of Moser-de Bruijn Sequence``static` `int` `gen(``int` `n)``{ ``    ``int` `[]S = ``new` `int` `[n + ``1``];` `    ``S[``0``] = ``0``;``    ``if``(n != ``0``)``        ``S[``1``] = ``1``;` `    ``for` `(``int` `i = ``2``; i <= n; i++)``    ``{ ``        ` `        ``// S(2 * n) = 4 * S(n)``        ``if` `(i % ``2` `== ``0``)``        ``S[i] = ``4` `* S[i / ``2``];``    ` `        ``// S(2 * n + 1) = 4 * S(n) + 1``        ``else``        ``S[i] = ``4` `* S[i/``2``] + ``1``;``    ``}``    ` `    ``return` `S[n];``}` `// Generating the first 'n' terms ``// of Moser-de Bruijn Sequence``static` `void` `moserDeBruijn(``int` `n)``{``    ``for` `(``int` `i = ``0``; i < n; i++)``        ``System.out.print(gen(i)+``" "``);``}` `// Driver Code``public` `static` `void` `main(String[] args)``{``    ``int` `n = ``15``;``    ``System.out.println(``"First "` `+ n + ``                       ``" terms of "` `+ ``      ``"Moser-de Bruijn Sequence : "``);``    ``moserDeBruijn(n);``}``}` `// This code is contributed by ``// Smitha Dinesh Semwal.`

## Python3

 `# python3 code to generate first 'n' terms ``# of the Moser-de Bruijn Sequence` `# Function to generate nth term ``# of Moser-de Bruijn Sequence``def` `gen( n ):``    ``S ``=` `[``0``, ``1``]``    ``for` `i ``in` `range``(``2``, n``+``1``):``        ` `        ``# S(2 * n) = 4 * S(n)``        ``if` `i ``%` `2` `=``=` `0``:``            ``S.append(``4` `*` `S[``int``(i ``/` `2``)]);``            ` `        ``# S(2 * n + 1) = 4 * S(n) + 1``        ``else``:``            ``S.append(``4` `*` `S[``int``(i ``/` `2``)] ``+` `1``);``    ``z ``=` `S[n];``    ``return` `z;` `# Generating the first 'n' terms ``# of Moser-de Bruijn Sequence``def` `moserDeBruijn(n):``    ``for` `i ``in` `range``(n):``        ``print``(gen(i), end ``=` `" "``)` `# Driver Code``n ``=` `15``print``(``"First"``, n, ``"terms of "``,``    ``"Moser-de Brujn Sequence:"``)``moserDeBruijn(n)` `# This code is contributed by mits.`

## C#

 `// C# code to generate first 'n' terms ``// of the Moser-de Bruijn Sequence``using` `System;` `class` `GFG ``{``    ` `// Function to generate nth term ``// of Moser-de Bruijn Sequence``static` `int` `gen(``int` `n)``{ ``    ``int` `[]S = ``new` `int` `[n + 1];` `    ``S[0] = 0;``    ``if``(n != 0)``        ``S[1] = 1;` `    ``for` `(``int` `i = 2; i <= n; i++)``    ``{ ``        ` `        ``// S(2 * n) = 4 * S(n)``        ``if` `(i % 2 == 0)``        ``S[i] = 4 * S[i / 2];``    ` `        ``// S(2 * n + 1) = 4 * S(n) + 1``        ``else``        ``S[i] = 4 * S[i/2] + 1;``    ``}``    ` `    ``return` `S[n];``}` `// Generating the first 'n' terms ``// of Moser-de Bruijn Sequence``static` `void` `moserDeBruijn(``int` `n)``{``    ``for` `(``int` `i = 0; i < n; i++)``        ``Console.Write(gen(i)+``" "``);``}` `// Driver Code``public` `static` `void` `Main()``{``    ``int` `n = 15;``    ``Console.WriteLine(``"First "` `+ n + ``                      ``" terms of "` `+ ``     ``"Moser-de Bruijn Sequence : "``);``    ``moserDeBruijn(n);``}``}` `// This code is contributed by ``// Smitha Dinesh Semwal.`

## PHP

 ``

## Javascript

 ``

Output :

```First 15 terms of Moser-de Bruijn Sequence :
0 1 4 5 16 17 20 21 64 65 68 69 80 81 84```

Time complexity: O(n) since using a for loop

Auxiliary Space: O(n) for array

Previous
Next