# Find sum of even index binomial coefficients

Given a positive integer n. The task is to find the sum of even indexed binomial coefficient. That is,
nC0 + nC2 + nC4 + nC6 + nC8 + ………..

Examples :

```Input : n = 4
Output : 8
4C0 + 4C2 + 4C4
= 1 + 6 + 1
= 8

Input : n = 6
Output : 32
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Method 1: (Brute Force)
The idea is to find all the binomial coefficient and find only the sum of even indexed value.

## CPP

 `// CPP Program to find sum  ` `// of even index term ` `#include ` `using` `namespace` `std; ` ` `  `// Return the sum of  ` `// even index term ` `int` `evenSum(``int` `n) ` `{ ` `    ``int` `C[n + 1][n + 1]; ` `    ``int` `i, j; ` ` `  `    ``// Calculate value of Binomial  ` `    ``// Coefficient in bottom up manner ` `    ``for` `(i = 0; i <= n; i++) { ` `        ``for` `(j = 0; j <= min(i, n); j++) { ` `            ``// Base Cases ` `            ``if` `(j == 0 || j == i) ` `                ``C[i][j] = 1; ` ` `  `            ``// Calculate value using  ` `            ``// previously stored values ` `            ``else` `                ``C[i][j] = C[i - 1][j - 1]  ` `                            ``+ C[i - 1][j]; ` `        ``} ` `    ``}     ` ` `  `    ``// finding sum of even index term. ` `    ``int` `sum = 0; ` `    ``for` `(``int` `i = 0; i <= n; i += 2) ` `        ``sum += C[n][i]; ` ` `  `    ``return` `sum; ` `} ` ` `  `// Driver Program ` `int` `main() ` `{ ` `    ``int` `n = 4; ` `    ``cout << evenSum(n) << endl; ` `    ``return` `0; ` `} `

## Java

 `// Java Program to find sum  ` `// of even index term ` `import` `java.io.*; ` `import` `java.math.*; ` ` `  `class` `GFG { ` `     `  `    ``// Return the sum of  ` `    ``// even index term ` `    ``static` `int` `evenSum(``int` `n) ` `    ``{ ` `        ``int` `C[][] = ``new` `int` `[n + ``1``][n + ``1``]; ` `        ``int` `i, j; ` `      `  `        ``// Calculate value of Binomial ` `        ``// Coefficient in bottom up manner ` `        ``for` `(i = ``0``; i <= n; i++)  ` `        ``{ ` `            ``for` `(j = ``0``; j <= Math.min(i, n); j++) ` `            ``{ ` `                ``// Base Cases ` `                ``if` `(j == ``0` `|| j == i) ` `                    ``C[i][j] = ``1``; ` `      `  `                ``// else Calculate value using  ` `                ``// previously stored values ` `                ``else` `                    ``C[i][j] = C[i - ``1``][j - ``1``]  ` `                                ``+ C[i - ``1``][j]; ` `            ``} ` `        ``}     ` `      `  `        ``// finding sum of even index term. ` `        ``int` `sum = ``0``; ` `        ``for` `(i = ``0``; i <= n; i += ``2``) ` `            ``sum += C[n][i]; ` `      `  `        ``return` `sum; ` `    ``} ` `      `  `    ``// Driver Program ` `    ``public` `static` `void` `main(String args[]) ` `    ``{ ` `        ``int` `n = ``4``; ` `        ``System.out.println(evenSum(n)); ` `    ``} ` `} ` ` `  `/*This code is contributed by Nikita Tiwari.*/`

## Python

 `# Python Program to find sum of even index term ` `import` `math  ` ` `  `# Return the sum of even index term ` `def` `evenSum(n) : ` `    ``# Creates a list containing n+1 lists, ` `    ``# each of n+1 items, all set to 0 ` `    ``C ``=` `[[``0` `for` `x ``in` `range``(n ``+` `1``)] ``for` `y ``in` `range``(n ``+` `1``)]  ` ` `  `    ``# Calculate value of Binomial Coefficient ` `    ``# in bottom up manner ` `    ``for` `i ``in` `range``(``0``, n ``+` `1``): ` `        ``for` `j ``in` `range``(``0``, ``min``(i, n ``+` `1``)): ` `            ``# Base Cases ` `            ``if` `j ``=``=` `0` `or` `j ``=``=` `i: ` `                ``C[i][j] ``=` `1` ` `  `            ``# Calculate value using previously ` `            ``# stored values ` `            ``else``: ` `                ``C[i][j] ``=` `C[i ``-` `1``][j ``-` `1``] ``+` `C[i ``-` `1``][j] ` `         `  `    ``# Finding sum of even index term ` `    ``sum` `=` `0``; ` `    ``for` `i ``in` `range``(``0``, n ``+` `1``): ` `        ``if` `n ``%` `2` `=``=` `0``: ` `            ``sum` `=` `sum` `+` `C[n][i] ` `             `  `    ``return` `sum` `     `  `# Driver method ` `n ``=` `4` `print` `evenSum(n) ` ` `  ` `  `# This code is contributed by 'Gitanjali'. `

## C#

 `// C# Program to find sum  ` `// of even index term ` `using` `System; ` ` `  `class` `GFG { ` `     `  `    ``// Return the sum of  ` `    ``// even index term ` `    ``static` `int` `evenSum(``int` `n) ` `    ``{ ` `        ``int` `[,]C = ``new` `int` `[n + 1,n + 1]; ` `        ``int` `i, j; ` `     `  `        ``// Calculate value of Binomial ` `        ``// Coefficient in bottom up manner ` `        ``for` `(i = 0; i <= n; i++)  ` `        ``{ ` `            ``for` `(j = 0; j <= Math.Min(i, n); j++) ` `            ``{ ` `                ``// Base Cases ` `                ``if` `(j == 0 || j == i) ` `                    ``C[i,j] = 1; ` `     `  `                ``// else Calculate value using  ` `                ``// previously stored values ` `                ``else` `                    ``C[i,j] = C[i - 1,j - 1]  ` `                            ``+ C[i - 1,j]; ` `            ``} ` `        ``}  ` `     `  `        ``// finding sum of even index term. ` `        ``int` `sum = 0; ` `        ``for` `(i = 0; i <= n; i += 2) ` `            ``sum += C[n,i]; ` `     `  `        ``return` `sum; ` `    ``} ` `     `  `    ``// Driver Program ` `    ``public` `static` `void` `Main() ` `    ``{ ` `        ``int` `n = 4; ` `        ``Console.WriteLine(evenSum(n)); ` `    ``} ` `} ` ` `  `/*This code is contributed by vt_m.*/`

## PHP

 ` `

Output :

```8
```

Time Complexity : O(n2)

Method 2: (Using Formula)
Sum of even indexed binomial coeffient : Proof :

```We know,
(1 + x)n = nC0 + nC1 x + nC2 x2 + ..... + nCn xn

Now put x = -x, we get
(1 - x)n = nC0 - nC1 x + nC2 x2 + ..... + (-1)n nCn xn

Now, adding both the above equation, we get,
(1 + x)n + (1 - x)n = 2 * [nC0 + nC2 x2 + nC4 x4 + .......]

Put x = 1
(1 + 1)n + (1 - 1)n = 2 * [nC0 + nC2 + nC4 + .......]
2n/2 = nC0 + nC2 + nC4 + .......
2n-1 = nC0 + nC2 + nC4 + .......
```

Below is the implementation of this approach :

## C++

 `// CPP Program to find sum even indexed Binomial ` `// Coefficient. ` `#include ` `using` `namespace` `std; ` ` `  `// Returns value of even indexed Binomial Coefficient ` `// Sum which is 2 raised to power n-1. ` `int` `evenbinomialCoeffSum(``int` `n) ` `{ ` `    ``return` `(1 << (n - 1)); ` `} ` ` `  `/* Driver program to test above function*/` `int` `main() ` `{ ` `    ``int` `n = 4; ` `    ``printf``(``"%d"``, evenbinomialCoeffSum(n)); ` `    ``return` `0; ` `} `

## Java

 `// Java Program to find sum even indexed  ` `// Binomial Coefficient. ` `import` `java.io.*; ` ` `  `class` `GFG { ` `// Returns value of even indexed Binomial Coefficient ` `// Sum which is 2 raised to power n-1. ` `static` `int` `evenbinomialCoeffSum(``int` `n) ` `{ ` `    ``return` `(``1` `<< (n - ``1``)); ` `} ` ` `  `// Driver Code ` `public` `static` `void` `main(String[] args) ` `{ ` `int` `n = ``4``; ` `    ``System.out.println(evenbinomialCoeffSum(n)); ` `} ` `    ``} ` ` `  `// This code is contributed by 'Gitanjali'. `

## Python

 `# Python program to find sum even indexed  ` `# Binomial Coefficient ` `import` `math  ` ` `  `# Returns value of even indexed Binomial Coefficient ` `# Sum which is 2 raised to power n-1. ` `def` `evenbinomialCoeffSum( n): ` ` `  `    ``return` `(``1` `<< (n ``-` `1``)) ` ` `  `# Driver method ` `if` `__name__ ``=``=` `'__main__'``: ` `    ``n ``=` `4` `    ``print` `evenbinomialCoeffSum(n) ` ` `  `# This code is contributed by 'Gitanjali'. `

## C#

 `// C# Program to find sum even indexed  ` `// Binomial Coefficient. ` `using` `System; ` ` `  `class` `GFG  ` `{ ` `    ``// Returns value of even indexed  ` `    ``// Binomial Coefficient Sum which  ` `    ``// is 2 raised to power n-1. ` `    ``static` `int` `evenbinomialCoeffSum(``int` `n) ` `    ``{ ` `        ``return` `(1 << (n - 1)); ` `    ``} ` `     `  `    ``// Driver Code ` `    ``public` `static` `void` `Main() ` `    ``{ ` `        ``int` `n = 4; ` `        ``Console.WriteLine(evenbinomialCoeffSum(n)); ` `    ``} ` `} ` ` `  `// This code is contributed by 'Vt_m'. `

## PHP

 ` `

Output :

```8
```

Time Complexity : O(1)

Sum of odd index binomial coefficient
Using the above result we can easily prove that the sum of odd index binomial coefficient is also 2n-1.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : vt_m, nidhi_biet