Skip to content
Related Articles

Related Articles

Ways of selecting men and women from a group to make a team
  • Last Updated : 03 Jan, 2019

Given four integers n, w, m and k where,

  • m is the total number of men.
  • w is the total number of women.
  • n is the total number of people that need to be selected to form the team.
  • k is the minimum number of men that have to be selected.

The task is to find the number of ways in which the team can be formed.

Examples:

Input: m = 2, w = 2, n = 3, k = 1
Output: 4
There are 2 men, 2 women. We need to make a team of size 3 with at least one man and one woman. We can make the team in following ways.
m1 m2 w1
m1 w1 w2
m2 w1 w2
m1 m2 w2

Input: m = 7, w = 6, n = 5, k = 3
Output: 756



Input: m = 5, w = 6, n = 6, k = 3
Output: 281

Approach: Since, we have to take at least k men.

Totals ways = Ways when ‘k’ men are selected + Ways when ‘k+1’ men are selected + … + when ‘n’ men are selected

.
Taking the first example from above where out of 7 men and 6 women, total 5 people need to be selected with at least 3 men,
Number of ways = (7C3 x 6C2) + (7C4 x 6C1) + (7C5)
= 7 x 6 x 5 x 6 x 5 + (7C3 x 6C1) + (7C2)
= 525 + 7 x 6 x 5 x 6 + 7 x 6
= (525 + 210 + 21)
= 756

Below is the implementation of the above approach:

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// Returns factorial
// of the number
int fact(int n)
{
    int fact = 1;
    for (int i = 2; i <= n; i++)
        fact *= i;
    return fact;
}
  
// Function to calculate ncr
int ncr(int n, int r)
{
    int ncr = fact(n) / (fact(r) * fact(n - r));
    return ncr;
}
  
// Function to calculate
// the total possible ways
int ways(int m, int w, int n, int k)
{
  
    int ans = 0;
    while (m >= k) {
        ans += ncr(m, k) * ncr(w, n - k);
        k += 1;
    }
  
    return ans;
}
  
// Driver code
int main()
{
  
    int m, w, n, k;
    m = 7;
    w = 6;
    n = 5;
    k = 3;
    cout << ways(m, w, n, k);
}


Java




// Java implementation of the approach
  
import java.io.*;
  
class GFG {
  
// Returns factorial
// of the number
static int fact(int n)
{
    int fact = 1;
    for (int i = 2; i <= n; i++)
        fact *= i;
    return fact;
}
  
// Function to calculate ncr
static int ncr(int n, int r)
{
    int ncr = fact(n) / (fact(r) * fact(n - r));
    return ncr;
}
  
// Function to calculate
// the total possible ways
static int ways(int m, int w, int n, int k)
{
  
    int ans = 0;
    while (m >= k) {
        ans += ncr(m, k) * ncr(w, n - k);
        k += 1;
    }
  
    return ans;
}
  
// Driver code
    public static void main (String[] args) {
          
    int m, w, n, k;
    m = 7;
    w = 6;
    n = 5;
    k = 3;
    System.out.println( ways(m, w, n, k));
    }
}
// This Code is contributed
// by shs


Python3




# Python 3 implementation of the approach 
  
# Returns factorial of the number 
def fact(n): 
    fact = 1
    for i in range(2, n + 1): 
        fact *=
    return fact
  
# Function to calculate ncr 
def ncr(n, r):
    ncr = fact(n) // (fact(r) * fact(n - r)) 
    return ncr
  
# Function to calculate 
# the total possible ways 
def ways(m, w, n, k):
    ans = 0
    while (m >= k): 
        ans += ncr(m, k) * ncr(w, n - k) 
        k += 1
  
    return ans;
  
# Driver code 
m = 7
w = 6
n = 5
k = 3
print(ways(m, w, n, k))
  
# This code is contributed by sahishelangia


C#




// C# implementation of the approach
  
class GFG {
  
// Returns factorial
// of the number
static int fact(int n)
{
    int fact = 1;
    for (int i = 2; i <= n; i++)
        fact *= i;
    return fact;
}
  
// Function to calculate ncr
static int ncr(int n, int r)
{
    int ncr = fact(n) / (fact(r) * fact(n - r));
    return ncr;
}
  
// Function to calculate
// the total possible ways
static int ways(int m, int w, int n, int k)
{
  
    int ans = 0;
    while (m >= k) {
        ans += ncr(m, k) * ncr(w, n - k);
        k += 1;
    }
  
    return ans;
}
  
// Driver code
    static void Main () {
          
    int m, w, n, k;
    m = 7;
    w = 6;
    n = 5;
    k = 3;
    System.Console.WriteLine( ways(m, w, n, k));
    }
}
// This Code is contributed by mits


PHP




<?php
// PHP implementation of the approach
  
// Returns factorial of the number
function fact($n)
{
    $fact = 1;
    for ($i = 2; $i <= $n; $i++)
        $fact *= $i;
    return $fact;
}
  
// Function to calculate ncr
function ncr($n, $r)
{
    $ncr = (int)(fact($n) / (fact($r) * 
                 fact($n - $r)));
    return $ncr;
}
  
// Function to calculate the total 
// possible ways
function ways($m, $w, $n, $k)
{
    $ans = 0;
    while ($m >= $k
    {
        $ans += ncr($m, $k) *
                ncr($w, $n - $k);
        $k += 1;
    }
  
    return $ans;
}
  
// Driver code
$m = 7;
$w = 6;
$n = 5;
$k = 3;
echo ways($m, $w, $n, $k);
  
// This Code is contributed
// by Mukul Singh


Output:

756

Further Optimization : The above code can be optimized using faster algorithms for binomial coefficient computation.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up
Recommended Articles
Page :