Euler’s Totient function Φ(n) for an input n is count of numbers in {1, 2, 3, …, n} that are relatively prime to n, i.e., the numbers whose GCD (Greatest Common Divisor) with n is 1.

For example, Φ(4) = 2, Φ(3) = 2 and Φ(5) = 4. There are 2 numbers smaller or equal to 4 that are relatively prime to 4, 2 numbers smaller or equal to 3 that are relatively prime to 3. And 4 numbers smaller than or equal to 5 that are relatively prime to 5.

We have discussed different methods for computation of Φ(n) in previous post.

**How to compute Φ for all numbers smaller than or equal to n?**

Example:

Input: n = 5 Output: Totient of 1 is 1 Totient of 2 is 1 Totient of 3 is 2 Totient of 4 is 2 Totient of 5 is 4

**We strongly recommend you to minimize your browser and try this yourself first.**

A **Simple Solution **is to call Φ(i) for i = 1 to n.

An **Efficient Solution **is to use idea similar to Sieve of Eratosthenes to precompute all values. The method is based on below product formula.

The formula basically says that the value of Φ(n) is equal to n multiplied by product of (1 – 1/p) for all prime factors p of n. For example value of Φ(6) = 6 * (1-1/2) * (1 – 1/3) = 2.

Below is the complete algorithm:

1) Create an array phi[1..n] to store Φ values of all numbers from 1 to n. 2) Initialize all values such that phi[i] stores i. This initialization serves two purposes. a) To check if phi[i] is already evaluated or not. Note that the maximum possible phi value of a number i is i-1. b) To initialize phi[i] as i is a multiple in above product formula. 3) Run a loop for p = 2 to n a) If phi[p] is p, means p is not evaluated yet and p is a prime number (similar to Sieve), otherwise phi[p] must have been updated in step 3.b b) Traverse through all multiples of p and update all multiples of p by multiplying with (1-1/p). 4) Run a loop from i = 1 to n and print all Ph[i] values.

Below is the implementation of above algorithm.

## C++

`// C++ program to compute Totient function for` `// all numbers smaller than or equal to n.` `#include<iostream>` `using` `namespace` `std;` `// Computes and prints totien of all numbers` `// smaller than or equal to n.` `void` `computeTotient(` `int` `n)` `{` ` ` `// Create and initialize an array to store` ` ` `// phi or totient values` ` ` `long` `long` `phi[n+1];` ` ` `for` `(` `int` `i=1; i<=n; i++)` ` ` `phi[i] = i; ` `// indicates not evaluated yet` ` ` `// and initializes for product` ` ` `// formula.` ` ` `// Compute other Phi values` ` ` `for` `(` `int` `p=2; p<=n; p++)` ` ` `{` ` ` `// If phi[p] is not computed already,` ` ` `// then number p is prime` ` ` `if` `(phi[p] == p)` ` ` `{` ` ` `// Phi of a prime number p is` ` ` `// always equal to p-1.` ` ` `phi[p] = p-1;` ` ` `// Update phi values of all` ` ` `// multiples of p` ` ` `for` `(` `int` `i = 2*p; i<=n; i += p)` ` ` `{` ` ` `// Add contribution of p to its` ` ` `// multiple i by multiplying with` ` ` `// (1 - 1/p)` ` ` `phi[i] = (phi[i]/p) * (p-1);` ` ` `}` ` ` `}` ` ` `}` ` ` `// Print precomputed phi values` ` ` `for` `(` `int` `i=1; i<=n; i++)` ` ` `cout << ` `"Totient of "` `<< i << ` `" is "` ` ` `<< phi[i] << endl;` `}` `// Driver program to test above function` `int` `main()` `{` ` ` `int` `n = 12;` ` ` `computeTotient(n);` ` ` `return` `0;` `}` |

## Java

`// Java program to compute Totient` `// function for all numbers smaller` `// than or equal to n.` `import` `java.util.*;` `class` `GFG {` ` ` `// Computes and prints totient of all numbers` `// smaller than or equal to n.` `static` `void` `computeTotient(` `int` `n) {` ` ` ` ` `// Create and initialize an array to store` ` ` `// phi or totient values` ` ` `long` `phi[] = ` `new` `long` `[n + ` `1` `];` ` ` `for` `(` `int` `i = ` `1` `; i <= n; i++)` ` ` `phi[i] = i; ` `// indicates not evaluated yet` ` ` `// and initializes for product` ` ` `// formula.` ` ` `// Compute other Phi values` ` ` `for` `(` `int` `p = ` `2` `; p <= n; p++) {` ` ` ` ` `// If phi[p] is not computed already,` ` ` `// then number p is prime` ` ` `if` `(phi[p] == p) {` ` ` ` ` `// Phi of a prime number p is` ` ` `// always equal to p-1.` ` ` `phi[p] = p - ` `1` `;` ` ` `// Update phi values of all` ` ` `// multiples of p` ` ` `for` `(` `int` `i = ` `2` `* p; i <= n; i += p) {` ` ` ` ` `// Add contribution of p to its` ` ` `// multiple i by multiplying with` ` ` `// (1 - 1/p)` ` ` `phi[i] = (phi[i] / p) * (p - ` `1` `);` ` ` `}` ` ` `}` ` ` `}` ` ` `// Print precomputed phi values` ` ` `for` `(` `int` `i = ` `1` `; i <= n; i++)` ` ` `System.out.println(` `"Totient of "` `+ i +` ` ` `" is "` `+ phi[i]);` `}` `// Driver code` `public` `static` `void` `main(String[] args) {` ` ` ` ` `int` `n = ` `12` `;` ` ` `computeTotient(n);` `}` `}` `// This code is contributed by Anant Agarwal.` |

## Python3

`# Python program to compute` `# Totient function for` `# all numbers smaller than` `# or equal to n.` `# Computes and prints` `# totient of all numbers` `# smaller than or equal to n.` `def` `computeTotient(n):` ` ` `# Create and initialize` ` ` `# an array to store` ` ` `# phi or totient values` ` ` `phi` `=` `[]` ` ` `for` `i ` `in` `range` `(n ` `+` `2` `):` ` ` `phi.append(` `0` `)` ` ` `for` `i ` `in` `range` `(` `1` `, n` `+` `1` `):` ` ` `phi[i] ` `=` `i ` `# indicates not evaluated yet` ` ` `# and initializes for product` ` ` `# formula.` ` ` `# Compute other Phi values` ` ` `for` `p ` `in` `range` `(` `2` `,n` `+` `1` `):` ` ` ` ` `# If phi[p] is not computed already,` ` ` `# then number p is prime` ` ` `if` `(phi[p] ` `=` `=` `p):` ` ` ` ` `# Phi of a prime number p is` ` ` `# always equal to p-1.` ` ` `phi[p] ` `=` `p` `-` `1` ` ` `# Update phi values of all` ` ` `# multiples of p` ` ` `for` `i ` `in` `range` `(` `2` `*` `p,n` `+` `1` `,p):` ` ` ` ` `# Add contribution of p to its` ` ` `# multiple i by multiplying with` ` ` `# (1 - 1/p)` ` ` `phi[i] ` `=` `(phi[i]` `/` `/` `p) ` `*` `(p` `-` `1` `)` ` ` ` ` `# Print precomputed phi values` ` ` `for` `i ` `in` `range` `(` `1` `,n` `+` `1` `):` ` ` `print` `(` `"Totient of "` `, i ,` `" is "` `,` ` ` `phi[i])` `# Driver code` `n ` `=` `12` `computeTotient(n)` `# This code is contributed` `# by Anant Agarwal` |

## C#

`// C# program to check if given two` `// strings are at distance one.` `using` `System;` `class` `GFG` `{` ` ` `// Computes and prints totient of all` `// numbers smaller than or equal to n` `static` `void` `computeTotient(` `int` `n)` `{` ` ` ` ` `// Create and initialize an array to` ` ` `// store phi or totient values` ` ` `long` `[]phi = ` `new` `long` `[n + 1];` ` ` `for` `(` `int` `i = 1; i <= n; i++)` ` ` ` ` `// indicates not evaluated yet` ` ` `// and initializes for product` ` ` `// formula.` ` ` `phi[i] = i;` ` ` ` ` `// Compute other Phi values` ` ` `for` `(` `int` `p = 2; p <= n; p++)` ` ` `{` ` ` ` ` `// If phi[p] is not computed already,` ` ` `// then number p is prime` ` ` `if` `(phi[p] == p)` ` ` `{` ` ` ` ` `// Phi of a prime number p is` ` ` `// always equal to p-1.` ` ` `phi[p] = p - 1;` ` ` `// Update phi values of all` ` ` `// multiples of p` ` ` `for` `(` `int` `i = 2 * p; i <= n; i += p)` ` ` `{` ` ` ` ` `// Add contribution of p to its` ` ` `// multiple i by multiplying with` ` ` `// (1 - 1/p)` ` ` `phi[i] = (phi[i] / p) * (p - 1);` ` ` ` ` `}` ` ` `}` ` ` `}` ` ` `// Print precomputed phi values` ` ` `for` `(` `int` `i = 1; i <= n; i++)` ` ` `Console.WriteLine(` `"Totient of "` `+ i +` `" is "` `+ phi[i]);` `}` `// Driver code` `public` `static` `void` `Main()` `{` ` ` ` ` `int` `n = 12;` ` ` `computeTotient(n);` `}` `}` `// This code is contributed by Sam007.` |

## PHP

`<?php` `// PHP program to compute Totient` `// function for all numbers smaller` `// than or equal to n.` `// Computes and prints totient` `// of all numbers smaller than` `// or equal to n.` `function` `computeTotient(` `$n` `)` `{` ` ` ` ` `// Create and initialize` ` ` `// an array to store` ` ` `// phi or totient values` ` ` `for` `(` `$i` `= 1; ` `$i` `<= ` `$n` `; ` `$i` `++)` ` ` ` ` `// indicates not evaluated yet` ` ` `// and initializes for product` ` ` `// formula.` ` ` `$phi` `[` `$i` `] = ` `$i` `;` ` ` `// Compute other Phi values` ` ` `for` `(` `$p` `= 2; ` `$p` `<= ` `$n` `; ` `$p` `++)` ` ` `{` ` ` ` ` `// If phi[p] is not computed already,` ` ` `// then number p is prime` ` ` `if` `(` `$phi` `[` `$p` `] == ` `$p` `)` ` ` `{` ` ` ` ` `// Phi of a prime number p is` ` ` `// always equal to p-1.` ` ` `$phi` `[` `$p` `] = ` `$p` `- 1;` ` ` `// Update phi values of all` ` ` `// multiples of p` ` ` `for` `(` `$i` `= 2 * ` `$p` `; ` `$i` `<= ` `$n` `; ` `$i` `+= ` `$p` `)` ` ` `{` ` ` ` ` `// Add contribution of p to its` ` ` `// multiple i by multiplying with` ` ` `// (1 - 1/$p)` ` ` `$phi` `[` `$i` `] = (` `$phi` `[` `$i` `] / ` `$p` `) * (` `$p` `- 1);` ` ` `}` ` ` `}` ` ` `}` ` ` `// Print precomputed phi values` ` ` `for` `(` `$i` `= 1; ` `$i` `<= ` `$n` `; ` `$i` `++)` ` ` `echo` `"Totient of "` `, ` `$i` `, ` `" is "` `,` ` ` `$phi` `[` `$i` `] ,` `"\n"` `;` `}` ` ` `// Driver Code` ` ` `$n` `= 12;` ` ` `computeTotient(` `$n` `);` `// This code is contributed by ajit` `?>` |

## Javascript

`<script>` ` ` `// Javascript program to check if given two` ` ` `// strings are at distance one.` ` ` ` ` `// Computes and prints totient of all` ` ` `// numbers smaller than or equal to n` ` ` `function` `computeTotient(n)` ` ` `{` ` ` `// Create and initialize an array to` ` ` `// store phi or totient values` ` ` `let phi = ` `new` `Array(n + 1);` ` ` `for` `(let i = 1; i <= n; i++)` ` ` `// indicates not evaluated yet` ` ` `// and initializes for product` ` ` `// formula.` ` ` `phi[i] = i;` ` ` `// Compute other Phi values` ` ` `for` `(let p = 2; p <= n; p++)` ` ` `{` ` ` `// If phi[p] is not computed already,` ` ` `// then number p is prime` ` ` `if` `(phi[p] == p)` ` ` `{` ` ` `// Phi of a prime number p is` ` ` `// always equal to p-1.` ` ` `phi[p] = p - 1;` ` ` `// Update phi values of all` ` ` `// multiples of p` ` ` `for` `(let i = 2 * p; i <= n; i += p)` ` ` `{` ` ` `// Add contribution of p to its` ` ` `// multiple i by multiplying with` ` ` `// (1 - 1/p)` ` ` `phi[i] = parseInt(phi[i] / p, 10) * (p - 1);` ` ` `}` ` ` `}` ` ` `}` ` ` `// Print precomputed phi values` ` ` `for` `(let i = 1; i <= n; i++)` ` ` `document.write(` `"Totient of "` `+ i +` `" is "` `+ phi[i] + ` `"</br>"` `);` ` ` `}` ` ` ` ` `let n = 12;` ` ` `computeTotient(n);` `</script>` |

**Output:**

Totient of 1 is 1 Totient of 2 is 1 Totient of 3 is 2 Totient of 4 is 2 Totient of 5 is 4 Totient of 6 is 2 Totient of 7 is 6 Totient of 8 is 4 Totient of 9 is 6 Totient of 10 is 4 Totient of 11 is 10 Totient of 12 is 4

The same solution can be used when we have large number queries for computing totient function.

This article is contributed by Ekta Goel. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the **Essential Maths for CP Course** at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more, please refer **Complete Interview Preparation Course****.**