Skip to content
Related Articles
Open in App
Not now

Related Articles

Check if a large number is divisible by 6 or not

Improve Article
Save Article
Like Article
  • Difficulty Level : Basic
  • Last Updated : 29 Mar, 2023
Improve Article
Save Article
Like Article

Given a number, the task is to check if a number is divisible by 6 or not. The input number may be large and it may not be possible to store even if we use long long int.

Examples: 

Input  : n = 2112
Output: Yes

Input : n = 1124
Output : No

Input  : n = 363588395960667043875487
Output : No

C++




#include <iostream>
using namespace std;
 
int main() {
 
    long n = 36358839596;
   
      // finding given number is divisible by 6 or not
    if (n % 6 == 0)
        cout << "Yes";
    else
        cout << "No";
    return 0;
}
 
// This code is contributed by lokesh

Java




// Java code for the above approach
// To check whether the given number is divisible by 6 or not
import java.io.*;
 
class GFG {
    public static void main (String[] args) {
        long n = 36358839596L;
  
        // finding given number is divisible by 6 or not
        if (n % 6 == 0)
              System.out.print("Yes");
        else
              System.out.print("No");
    }
}
 
// This code is contributed by lokesh

Python3




# Python code
# To check whether the given number is divisible by 6 or not
 
#input
n=363588395960667043875487
# the above input can also be given as n=input() -> taking input from user
# finding given number is divisible by 6 or not
if int(n)%6==0:
  print("Yes")
else:
  print("No")

C#




using System;
public class GFG {
 
  static public void Main()
  {
 
    // C# code for the above approach
    // To check whether the given number is divisible by 6 or not
 
    //input
    long n = 36358839596;
 
    // finding given number is divisible by 6 or not
    if (n % 6 == 0)
      Console.Write("Yes");
    else
      Console.Write("No");
 
  }
}
 
// This code is contributed by ksrikanth0498

Javascript




<script>
        // JavaScript code for the above approach
        // To check whether the given number is divisible by 6 or not
 
        //input
        var n = 363588395960667043875487
         
        // finding given number is divisible by 6 or not
        if (n % 6 == 0)
            document.write("Yes")
        else
            document.write("No")
    // This code is contributed by Potta Lokesh
    </script>

PHP




<?php
// PHP program to check
// if a large number is
// divisible by 6.
 
  // Driver Code
  // input number
$num = 363588395960667043875487;
 
// finding given number is divisible by 6 or not
if ( $num %6 == 0)
    echo "Yes";
else
    echo "No";
 
// This code is contributed by satwik4409.
?>

Output

No

Time complexity: O(1) as it is performing constant operations
Auxiliary Space: O(1) as it is using constant space for variables

Since input number may be very large, we cannot use n % 6 to check if a number is divisible by 6 or not, especially in languages like C/C++. The idea is based on following fact. 

A number is divisible by 6 it's divisible by 2 and 3. 
a)  A number is divisible by 2 if its last digit is divisible by 2.
b)  A number is divisible by 3 if sum of digits is divisible by 3.

Below is the implementation based on above steps. 

C++




// C++ program to find if a number is divisible by
// 6 or not
#include<bits/stdc++.h>
using namespace std;
 
// Function to find that number divisible by 6 or not
bool check(string str)
{
    int n = str.length();
 
    // Return false if number is not divisible by 2.
    if ((str[n-1]-'0')%2 != 0)
       return false;
 
    // If we reach here, number is divisible by 2.
    // Now check for 3.
 
    // Compute sum of digits
    int digitSum = 0;
    for (int i=0; i<n; i++)
        digitSum += (str[i]-'0');
 
    // Check if sum of digits is divisible by 3
    return (digitSum % 3 == 0);
}
 
// Driver code
int main()
{
    string str = "1332";
    check(str)?  cout << "Yes" : cout << "No ";
    return 0;
}

Java




// Java program to find if a number is
// divisible by 6 or not
import java.io.*;
class IsDivisible
{
    // Function to find that number divisible by 6 or not
    static boolean check(String str)
    {
        int n = str.length();
      
        // Return false if number is not divisible by 2.
        if ((str.charAt(n-1) -'0')%2 != 0)
           return false;
      
        // If we reach here, number is divisible by 2.
        // Now check for 3.
      
        // Compute sum of digits
        int digitSum = 0;
        for (int i=0; i<n; i++)
            digitSum += (str.charAt(i)-'0');
      
        // Check if sum of digits is divisible by 3
        return (digitSum % 3 == 0);
    }
     
    // main function
    public static void main (String[] args)
    {
        String str = "1332";
        if(check(str))
            System.out.println("Yes");
        else
            System.out.println("No");
    }
}

Python3




# Python 3 program to find
# if a number is divisible
# by 6 or not
 
# Function to find that number
# is divisible by 6 or not
def check(st) :
    n = len(st)
     
     
    # Return false if number
    # is not divisible by 2.
    if (((int)(st[n-1])%2) != 0) :
        return False
  
    # If we reach here, number
    # is divisible by 2. Now
    # check for 3.
  
    # Compute sum of digits
    digitSum = 0
    for i in range(0, n) :
        digitSum = digitSum + (int)(st[i])
  
    # Check if sum of digits
    # is divisible by 3
    return (digitSum % 3 == 0)
 
 
# Driver code
st = "1332"
if(check(st)) :
    print("Yes")
else :
    print("No ")
     
# This article is contributed by Nikita Tiwari.

C#




// C# program to find if a number is
// divisible by 6 or not
using System;
 
class GFG {
     
    // Function to find that number
    // divisible by 6 or not
    static bool check(String str)
    {
        int n = str.Length;
     
        // Return false if number is
        // not divisible by 2.
        if ((str[n-1] -'0') % 2 != 0)
            return false;
     
        // If we reach here, number is
        // divisible by 2.
        // Now check for 3.
     
        // Compute sum of digits
        int digitSum = 0;
        for (int i = 0; i < n; i++)
            digitSum += (str[i] - '0');
     
        // Check if sum of digits is
        // divisible by 3
        return (digitSum % 3 == 0);
    }
     
    // main function
    public static void Main ()
    {
        String str = "1332";
         
        if(check(str))
            Console.Write("Yes");
        else
            Console.Write("No");
    }
}
 
// This code is contributed by parashar.

PHP




<?php
// PHP program to find if a
// number is divisible by
// 6 or not
 
// Function to find that number
// divisible by 6 or not
function check($str)
{
    $n = strlen($str);
 
    // Return false if number is
    // not divisible by 2.
    if (($str[$n - 1] - '0') % 2 != 0)
    return false;
 
    // If we reach here, number
    // is divisible by 2.
    // Now check for 3.
    // Compute sum of digits
    $digitSum = 0;
    for ($i = 0; $i < $n; $i++)
        $digitSum += ($str[$i] - '0');
 
    // Check if sum of digits
    // is divisible by 3
    return ($digitSum % 3 == 0);
}
 
    // Driver code
    $str = "1332";
    if(check($str))
        echo "Yes" ;
    else
        echo " No ";
    return 0;
 
// This code is contributed by nitin mittal.
?>

Javascript




<script>
 
// JavaScript program for the above approach
 
    // Function to find that number
    // divisible by 6 or not
    function check(str)
    {
        let n = str.length;
       
        // Return false if number is
        // not divisible by 2.
        if ((str[n-1] -'0') % 2 != 0)
            return false;
       
        // If we reach here, number is
        // divisible by 2.
        // Now check for 3.
       
        // Compute sum of digits
        let digitSum = 0;
        for (let i = 0; i < n; i++)
            digitSum += (str[i] - '0');
       
        // Check if sum of digits is
        // divisible by 3
        return (digitSum % 3 == 0);
    }
 
// Driver Code
     let str = "1332";
     if(check(str))
        document.write("Yes");
     else
        document.write("No");
 
// This code is contributed by splevel62.
</script>

Output

Yes

Time Complexity: O(logN) where N is the given number
Auxiliary Space: O(1) since no extra space is being used

This article is contributed by DANISH_RAZA . If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 

Approach#3: using the fact that it is divisible by 3 and 2 consecutive even numbers

We can check if a number is divisible by 6 by checking if it is divisible by 3 and any 2 consecutive even numbers (i.e., 2 and 4 or 4 and 6, etc.). We can use the modulo operation to find the remainder of the number when divided by 3 and check if it is divisible by any 2 consecutive even numbers.

Algorithm

1. Check if the remainder of the number when divided by 3 is 0.
2. Check if the last digit of the number is even.
3. If the last digit of the number is even, check if the second-last digit of the number is odd.
4. If the second-last digit of the number is odd, print “Yes”, otherwise print “No”.

Python3




def check_divisibility_by_6(n):
    if n % 3 == 0 and n % 10 % 2 == 0 and (n // 10) % 10 % 2 != 0:
        print("Yes")
    else:
        print("No")
n=2112
check_divisibility_by_6(n)
 
n=1124
check_divisibility_by_6(n)

Output

Yes
No

Time Complexity: O(log n) where n is the value of the number.

Auxiliary Space: O(1).


My Personal Notes arrow_drop_up
Like Article
Save Article
Related Articles

Start Your Coding Journey Now!