Check if a large number is divisible by 6 or not
Given a number, the task is to check if a number is divisible by 6 or not. The input number may be large and it may not be possible to store even if we use long long int.
Examples:
Input : n = 2112 Output: Yes Input : n = 1124 Output : No Input : n = 363588395960667043875487 Output : No
C++
#include <iostream> using namespace std; int main() { long n = 36358839596; // finding given number is divisible by 6 or not if (n % 6 == 0) cout << "Yes" ; else cout << "No" ; return 0; } // This code is contributed by lokesh |
Java
// Java code for the above approach // To check whether the given number is divisible by 6 or not import java.io.*; class GFG { public static void main (String[] args) { long n = 36358839596L; // finding given number is divisible by 6 or not if (n % 6 == 0 ) System.out.print( "Yes" ); else System.out.print( "No" ); } } // This code is contributed by lokesh |
Python3
# Python code # To check whether the given number is divisible by 6 or not #input n = 363588395960667043875487 # the above input can also be given as n=input() -> taking input from user # finding given number is divisible by 6 or not if int (n) % 6 = = 0 : print ( "Yes" ) else : print ( "No" ) |
C#
using System; public class GFG { static public void Main() { // C# code for the above approach // To check whether the given number is divisible by 6 or not //input long n = 36358839596; // finding given number is divisible by 6 or not if (n % 6 == 0) Console.Write( "Yes" ); else Console.Write( "No" ); } } // This code is contributed by ksrikanth0498 |
Javascript
<script> // JavaScript code for the above approach // To check whether the given number is divisible by 6 or not //input var n = 363588395960667043875487 // finding given number is divisible by 6 or not if (n % 6 == 0) document.write( "Yes" ) else document.write( "No" ) // This code is contributed by Potta Lokesh </script> |
PHP
<?php // PHP program to check // if a large number is // divisible by 6. // Driver Code // input number $num = 363588395960667043875487; // finding given number is divisible by 6 or not if ( $num %6 == 0) echo "Yes" ; else echo "No" ; // This code is contributed by satwik4409. ?> |
No
Time complexity: O(1) as it is performing constant operations
Auxiliary Space: O(1) as it is using constant space for variables
Since input number may be very large, we cannot use n % 6 to check if a number is divisible by 6 or not, especially in languages like C/C++. The idea is based on following fact.
A number is divisible by 6 it's divisible by 2 and 3. a) A number is divisible by 2 if its last digit is divisible by 2. b) A number is divisible by 3 if sum of digits is divisible by 3.
Below is the implementation based on above steps.
C++
// C++ program to find if a number is divisible by // 6 or not #include<bits/stdc++.h> using namespace std; // Function to find that number divisible by 6 or not bool check(string str) { int n = str.length(); // Return false if number is not divisible by 2. if ((str[n-1]- '0' )%2 != 0) return false ; // If we reach here, number is divisible by 2. // Now check for 3. // Compute sum of digits int digitSum = 0; for ( int i=0; i<n; i++) digitSum += (str[i]- '0' ); // Check if sum of digits is divisible by 3 return (digitSum % 3 == 0); } // Driver code int main() { string str = "1332" ; check(str)? cout << "Yes" : cout << "No " ; return 0; } |
Java
// Java program to find if a number is // divisible by 6 or not import java.io.*; class IsDivisible { // Function to find that number divisible by 6 or not static boolean check(String str) { int n = str.length(); // Return false if number is not divisible by 2. if ((str.charAt(n- 1 ) - '0' )% 2 != 0 ) return false ; // If we reach here, number is divisible by 2. // Now check for 3. // Compute sum of digits int digitSum = 0 ; for ( int i= 0 ; i<n; i++) digitSum += (str.charAt(i)- '0' ); // Check if sum of digits is divisible by 3 return (digitSum % 3 == 0 ); } // main function public static void main (String[] args) { String str = "1332" ; if (check(str)) System.out.println( "Yes" ); else System.out.println( "No" ); } } |
Python3
# Python 3 program to find # if a number is divisible # by 6 or not # Function to find that number # is divisible by 6 or not def check(st) : n = len (st) # Return false if number # is not divisible by 2. if ((( int )(st[n - 1 ]) % 2 ) ! = 0 ) : return False # If we reach here, number # is divisible by 2. Now # check for 3. # Compute sum of digits digitSum = 0 for i in range ( 0 , n) : digitSum = digitSum + ( int )(st[i]) # Check if sum of digits # is divisible by 3 return (digitSum % 3 = = 0 ) # Driver code st = "1332" if (check(st)) : print ( "Yes" ) else : print ( "No " ) # This article is contributed by Nikita Tiwari. |
C#
// C# program to find if a number is // divisible by 6 or not using System; class GFG { // Function to find that number // divisible by 6 or not static bool check(String str) { int n = str.Length; // Return false if number is // not divisible by 2. if ((str[n-1] - '0' ) % 2 != 0) return false ; // If we reach here, number is // divisible by 2. // Now check for 3. // Compute sum of digits int digitSum = 0; for ( int i = 0; i < n; i++) digitSum += (str[i] - '0' ); // Check if sum of digits is // divisible by 3 return (digitSum % 3 == 0); } // main function public static void Main () { String str = "1332" ; if (check(str)) Console.Write( "Yes" ); else Console.Write( "No" ); } } // This code is contributed by parashar. |
PHP
<?php // PHP program to find if a // number is divisible by // 6 or not // Function to find that number // divisible by 6 or not function check( $str ) { $n = strlen ( $str ); // Return false if number is // not divisible by 2. if (( $str [ $n - 1] - '0' ) % 2 != 0) return false; // If we reach here, number // is divisible by 2. // Now check for 3. // Compute sum of digits $digitSum = 0; for ( $i = 0; $i < $n ; $i ++) $digitSum += ( $str [ $i ] - '0' ); // Check if sum of digits // is divisible by 3 return ( $digitSum % 3 == 0); } // Driver code $str = "1332" ; if (check( $str )) echo "Yes" ; else echo " No " ; return 0; // This code is contributed by nitin mittal. ?> |
Javascript
<script> // JavaScript program for the above approach // Function to find that number // divisible by 6 or not function check(str) { let n = str.length; // Return false if number is // not divisible by 2. if ((str[n-1] - '0' ) % 2 != 0) return false ; // If we reach here, number is // divisible by 2. // Now check for 3. // Compute sum of digits let digitSum = 0; for (let i = 0; i < n; i++) digitSum += (str[i] - '0' ); // Check if sum of digits is // divisible by 3 return (digitSum % 3 == 0); } // Driver Code let str = "1332" ; if (check(str)) document.write( "Yes" ); else document.write( "No" ); // This code is contributed by splevel62. </script> |
Yes
Time Complexity: O(logN) where N is the given number
Auxiliary Space: O(1) since no extra space is being used
This article is contributed by DANISH_RAZA . If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Approach#3: using the fact that it is divisible by 3 and 2 consecutive even numbers
We can check if a number is divisible by 6 by checking if it is divisible by 3 and any 2 consecutive even numbers (i.e., 2 and 4 or 4 and 6, etc.). We can use the modulo operation to find the remainder of the number when divided by 3 and check if it is divisible by any 2 consecutive even numbers.
Algorithm
1. Check if the remainder of the number when divided by 3 is 0.
2. Check if the last digit of the number is even.
3. If the last digit of the number is even, check if the second-last digit of the number is odd.
4. If the second-last digit of the number is odd, print “Yes”, otherwise print “No”.
Python3
def check_divisibility_by_6(n): if n % 3 = = 0 and n % 10 % 2 = = 0 and (n / / 10 ) % 10 % 2 ! = 0 : print ( "Yes" ) else : print ( "No" ) n = 2112 check_divisibility_by_6(n) n = 1124 check_divisibility_by_6(n) |
Yes No
Time Complexity: O(log n) where n is the value of the number.
Auxiliary Space: O(1).
Please Login to comment...