Sum of Binomial coefficients

Given a positive integer n, the task is to find the sum of binomail coefficient i.e

nC0 + nC1 + nC2 + ……. + nCn-1 + nCn

Examples:



Input : n = 4
Output : 16
4C0 + 4C1 + 4C2 + 4C3 + 4C4
= 1 + 4 + 6 + 4 + 1
= 16

Input : n = 5
Output : 8

Method 1 (Brute Force):
The idea is to evaluate each binomial coefficient term i.e nCr, where 0 <= r <= n and calculate the sum of all the terms.

Below is the implementation of this approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP Program to find the sum of Binomial
// Coefficient.
#include <bits/stdc++.h>
using namespace std;
  
// Returns value of Binomial Coefficient Sum
int binomialCoeffSum(int n)
{
    int C[n + 1][n + 1];
  
    // Calculate value of Binomial Coefficient
    // in bottom up manner
    for (int i = 0; i <= n; i++) {
        for (int j = 0; j <= min(i, n); j++) {
            // Base Cases
            if (j == 0 || j == i)
                C[i][j] = 1;
  
            // Calculate value using previously
            // stored values
            else
                C[i][j] = C[i - 1][j - 1] + C[i - 1][j];
        }
    }
  
    // Calculating the sum.
    int sum = 0;
    for (int i = 0; i <= n; i++)
        sum += C[n][i];
  
    return sum;
}
  
/* Driver program to test above function*/
int main()
{
    int n = 4;
    printf("%d", binomialCoeffSum(n));
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java Program to find the sum 
// of Binomial Coefficient.
  
class GFG {
      
    // Returns value of Binomial 
    // Coefficient Sum
    static int binomialCoeffSum(int n)
    {
        int C[][] = new int[n + 1][n + 1];
      
        // Calculate value of Binomial 
        // Coefficient in bottom up manner
        for (int i = 0; i <= n; i++)
        {
            for (int j = 0; j <= Math.min(i, n); j++)
            {
                // Base Cases
                if (j == 0 || j == i)
                    C[i][j] = 1;
      
                // Calculate value using previously
                // stored values
                else
                    C[i][j] = C[i - 1][j - 1] +
                              C[i - 1][j];
              
                  
            }
        }
      
        // Calculating the sum.
        int sum = 0;
        for (int i = 0; i <= n; i++)
            sum += C[n][i];
      
        return sum;
    }
      
    /* Driver program to test above function*/
    public static void main(String[] args)
    {
        int n = 4;
        System.out.println(binomialCoeffSum(n));
    }
}
  
// This code is contributed by prerna saini.

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python  Program to find the sum 
# of Binomial Coefficient.
   
import math    
   
# Returns value of Binomial 
# Coefficient Sum
def binomialCoeffSum( n):
      
        C = [[0]*(n+2) for i in range(0,n+2)]
       
        # Calculate value of Binomial 
        # Coefficient in bottom up manner
        for i in range(0,n+1):
            for j in range(0, min(i, n)+1):
              
                # Base Cases
                if (j == 0 or j == i):
                    C[i][j] = 1
       
                # Calculate value using previously
                # stored values
                else:
                    C[i][j] = C[i - 1][j - 1] + C[i - 1][j]
       
        # Calculating the sum.
        sum = 0
        for i in range(0,n+1):
            sum += C[n][i]
       
        return sum
      
       
# Driver program to test above function
n = 4
print(binomialCoeffSum(n))
  
# This code is contributed by Gitanjali.

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find the sum
// of Binomial Coefficient.
using System;
  
class GFG {
  
    // Returns value of Binomial
    // Coefficient Sum
    static int binomialCoeffSum(int n)
    {
        int[, ] C = new int[n + 1, n + 1];
  
        // Calculate value of Binomial
        // Coefficient in bottom up manner
        for (int i = 0; i <= n; i++) 
        {
            for (int j = 0; j <= Math.Min(i, n); j++) 
            {
                // Base Cases
                if (j == 0 || j == i)
                    C[i, j] = 1;
  
                // Calculate value using previously
                // stored values
                else
                    C[i, j] = C[i - 1, j - 1] + C[i - 1, j];
            }
        }
  
        // Calculating the sum.
        int sum = 0;
        for (int i = 0; i <= n; i++)
            sum += C[n, i];
  
        return sum;
    }
  
    /* Driver program to test above function*/
    public static void Main()
    {
        int n = 4;
        Console.WriteLine(binomialCoeffSum(n));
    }
}
  
// This code is contributed by vt_m.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP Program to find the 
// sum of Binomial Coefficient.
// Returns value of Binomial 
// Coefficient Sum
  
function binomialCoeffSum($n)
{
    $C[$n + 1][$n + 1] = array(0);
  
    // Calculate value of 
    // Binomial Coefficient
    // in bottom up manner
    for ($i = 0; $i <= $n; $i++) 
    {
        for ($j = 0;
             $j <= min($i, $n); $j++)
        {
            // Base Cases
            if ($j == 0 || $j == $i)
                $C[$i][$j] = 1;
  
            // Calculate value 
            // using previously
            // stored values
            else
                $C[$i][$j] = $C[$i - 1][$j - 1] + 
                             $C[$i - 1][$j];
        }
    }
  
    // Calculating the sum.
    $sum = 0;
    for ($i = 0; $i <= $n; $i++)
        $sum += $C[$n][$i];
  
    return $sum;
}
  
// Driver Code
$n = 4;
echo binomialCoeffSum($n);
  
// This code is contributed by ajit
?>

chevron_right



Output:

16

Method 2 (Using Formula):

This can be proved in 2 ways.
First Proof: Using Principle of induction.

For basic step, n = 0
LHS = 0C0 = (0!)/(0! * 0!) = 1/1 = 1.
RHS= 20 = 1.
LHS = RHS

For induction step:
Let k be an integer such that k > 0 and for all r, 0 <= r <= k, where r belong to integers,
the formula stand true.
Therefore,
kC0 + kC1 + kC2 + ……. + kCk-1 + kCk = 2k

Now, we have to prove for n = k + 1,
k+1C0 + k+1C1 + k+1C2 + ……. + k+1Ck + k+1Ck+1 = 2k+1

LHS = k+1C0 + k+1C1 + k+1C2 + ……. + k+1Ck + k+1Ck+1
(Using nC0 = 0 and n+1Cr = nCr + nCr-1)
= 1 + kC0 + kC1 + kC1 + kC2 + …… + kCk-1 + kCk + 1
= kC0 + kC0 + kC1 + kC1 + …… + kCk-1 + kCk-1 + kCk + kCk
= 2 X ∑ nCr
= 2 X 2k
= 2k+1
= RHS

Second Proof: Using Binomial theorem expansion


Binomial expansion state,
(x + y)n = nC0 xn y0 + nC1 xn-1 y1 + nC2 xn-2 y2 + ……… + nCn-1 x1 yn-1 + nCn x0 yn

Put x = 1, y = 1
(1 + 1)n = nC0 1n 10 + nC1 xn-1 11 + nC2 1n-2 12 + ……… + nCn-1 11 1n-1 + nCn 10 1n

2n = nC0 + nC1 + nC2 + ……. + nCn-1 + nCn

Below is implementation of this approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP Program to find sum of Binomial
// Coefficient.
#include <bits/stdc++.h>
using namespace std;
  
// Returns value of Binomial Coefficient Sum
// which is 2 raised to power n.
int binomialCoeffSum(int n)
{
    return (1 << n);
}
  
/* Drier program to test above function*/
int main()
{
    int n = 4;
    printf("%d", binomialCoeffSum(n));
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java Program to find sum 
// of Binomial Coefficient.
import java.io.*;
  
class GFG
{
    // Returns value of Binomial
    // Coefficient Sum which is 
    // 2 raised to power n.
    static int binomialCoeffSum(int n)
    {
        return (1 << n);
    }
  
    // Driver Code
    public static void main (String[] args) 
    {
        int n = 4;
        System.out.println(binomialCoeffSum(n));
    }
}
  
// This code is contributed 
// by akt_mit.

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python  Program to find the sum 
# of Binomial Coefficient.
   
import math     
# Returns value of Binomial 
# Coefficient Sum
def binomialCoeffSum( n):
      
    return (1 << n);
  
# Driver program to test
# above function
n = 4
print(binomialCoeffSum(n))
  
# This code is contributed
# by Gitanjali.

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# Program to find sum of 
// Binomial Coefficient.
using System;
  
class GFG {
  
    // Returns value of Binomial Coefficient Sum
    // which is 2 raised to power n.
    static int binomialCoeffSum(int n)
    {
        return (1 << n);
    }
  
    /* Drier program to test above function*/
    static public void Main()
    {
        int n = 4;
        Console.WriteLine(binomialCoeffSum(n));
    }
}
  
// This code is contributed by vt_m.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP Program to find sum 
// of Binomial Coefficient.
  
// Returns value of Binomial 
// Coefficient Sum which is 
// 2 raised to power n.
function binomialCoeffSum($n)
{
    return (1 << $n);
}
  
// Driver Code
$n = 4;
echo binomialCoeffSum($n);
  
// This code is contributed
// by akt_mit
?>

chevron_right



Output:

16


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : jit_t