Given a positive integer n, the task is to find the sum of binomial coefficient i.e
nC0 + nC1 + nC2 + ……. + nCn-1 + nCn
Examples:
Input : n = 4
Output : 16
4C0 + 4C1 + 4C2 + 4C3 + 4C4
= 1 + 4 + 6 + 4 + 1
= 16
Input : n = 5
Output : 32
Method 1 (Brute Force):
The idea is to evaluate each binomial coefficient term i.e nCr, where 0 <= r <= n and calculate the sum of all the terms.
Below is the implementation of this approach:
C++
#include <bits/stdc++.h>
using namespace std;
int binomialCoeffSum( int n)
{
int C[n + 1][n + 1];
for ( int i = 0; i <= n; i++) {
for ( int j = 0; j <= min(i, n); j++) {
if (j == 0 || j == i)
C[i][j] = 1;
else
C[i][j] = C[i - 1][j - 1] + C[i - 1][j];
}
}
int sum = 0;
for ( int i = 0; i <= n; i++)
sum += C[n][i];
return sum;
}
int main()
{
int n = 4;
printf ( "%d" , binomialCoeffSum(n));
return 0;
}
|
Java
class GFG {
static int binomialCoeffSum( int n)
{
int C[][] = new int [n + 1 ][n + 1 ];
for ( int i = 0 ; i <= n; i++)
{
for ( int j = 0 ; j <= Math.min(i, n); j++)
{
if (j == 0 || j == i)
C[i][j] = 1 ;
else
C[i][j] = C[i - 1 ][j - 1 ] +
C[i - 1 ][j];
}
}
int sum = 0 ;
for ( int i = 0 ; i <= n; i++)
sum += C[n][i];
return sum;
}
public static void main(String[] args)
{
int n = 4 ;
System.out.println(binomialCoeffSum(n));
}
}
|
Python3
import math
def binomialCoeffSum( n):
C = [[ 0 ] * (n + 2 ) for i in range ( 0 ,n + 2 )]
for i in range ( 0 ,n + 1 ):
for j in range ( 0 , min (i, n) + 1 ):
if (j = = 0 or j = = i):
C[i][j] = 1
else :
C[i][j] = C[i - 1 ][j - 1 ] + C[i - 1 ][j]
sum = 0
for i in range ( 0 ,n + 1 ):
sum + = C[n][i]
return sum
n = 4
print (binomialCoeffSum(n))
|
C#
using System;
class GFG {
static int binomialCoeffSum( int n)
{
int [, ] C = new int [n + 1, n + 1];
for ( int i = 0; i <= n; i++)
{
for ( int j = 0; j <= Math.Min(i, n); j++)
{
if (j == 0 || j == i)
C[i, j] = 1;
else
C[i, j] = C[i - 1, j - 1] + C[i - 1, j];
}
}
int sum = 0;
for ( int i = 0; i <= n; i++)
sum += C[n, i];
return sum;
}
public static void Main()
{
int n = 4;
Console.WriteLine(binomialCoeffSum(n));
}
}
|
PHP
<?php
function binomialCoeffSum( $n )
{
$C [ $n + 1][ $n + 1] = array (0);
for ( $i = 0; $i <= $n ; $i ++)
{
for ( $j = 0;
$j <= min( $i , $n ); $j ++)
{
if ( $j == 0 || $j == $i )
$C [ $i ][ $j ] = 1;
else
$C [ $i ][ $j ] = $C [ $i - 1][ $j - 1] +
$C [ $i - 1][ $j ];
}
}
$sum = 0;
for ( $i = 0; $i <= $n ; $i ++)
$sum += $C [ $n ][ $i ];
return $sum ;
}
$n = 4;
echo binomialCoeffSum( $n );
?>
|
Javascript
<script>
function binomialCoeffSum(n)
{
let C = new Array(n + 1);
for ( var i = 0; i < C.length; i++) {
C[i] = new Array(2);
}
for (let i = 0; i <= n; i++)
{
for (let j = 0; j <= Math.min(i, n); j++)
{
if (j == 0 || j == i)
C[i][j] = 1;
else
C[i][j] = C[i - 1][j - 1] +
C[i - 1][j];
}
}
let sum = 0;
for (let i = 0; i <= n; i++)
sum += C[n][i];
return sum;
}
let n = 4;
document.write(binomialCoeffSum(n));
</script>
|
Output:
16
Method 2 (Using Formula):

This can be proved in 2 ways.
First Proof: Using Principle of induction.
For basic step, n = 0
LHS = 0C0 = (0!)/(0! * 0!) = 1/1 = 1.
RHS= 20 = 1.
LHS = RHS
For induction step:
Let k be an integer such that k > 0 and for all r, 0 <= r <= k, where r belong to integers,
the formula stand true.
Therefore,
kC0 + kC1 + kC2 + ……. + kCk-1 + kCk = 2k
Now, we have to prove for n = k + 1,
k+1C0 + k+1C1 + k+1C2 + ……. + k+1Ck + k+1Ck+1 = 2k+1
LHS = k+1C0 + k+1C1 + k+1C2 + ……. + k+1Ck + k+1Ck+1
(Using nC0 = 0 and n+1Cr = nCr + nCr-1)
= 1 + kC0 + kC1 + kC1 + kC2 + …… + kCk-1 + kCk + 1
= kC0 + kC0 + kC1 + kC1 + …… + kCk-1 + kCk-1 + kCk + kCk
= 2 X ? nCr
= 2 X 2k
= 2k+1
= RHS
Second Proof: Using Binomial theorem expansion
Binomial expansion state,
(x + y)n = nC0 xn y0 + nC1 xn-1 y1 + nC2 xn-2 y2 + ……… + nCn-1 x1 yn-1 + nCn x0 yn
Put x = 1, y = 1
(1 + 1)n = nC0 1n 10 + nC1 xn-1 11 + nC2 1n-2 12 + ……… + nCn-1 11 1n-1 + nCn 10 1n
2n = nC0 + nC1 + nC2 + ……. + nCn-1 + nCn
Below is implementation of this approach:
C++
#include <bits/stdc++.h>
using namespace std;
int binomialCoeffSum( int n)
{
return (1 << n);
}
int main()
{
int n = 4;
printf ( "%d" , binomialCoeffSum(n));
return 0;
}
|
Java
import java.io.*;
class GFG
{
static int binomialCoeffSum( int n)
{
return ( 1 << n);
}
public static void main (String[] args)
{
int n = 4 ;
System.out.println(binomialCoeffSum(n));
}
}
|
Python3
import math
def binomialCoeffSum( n):
return ( 1 << n);
n = 4
print (binomialCoeffSum(n))
|
C#
using System;
class GFG {
static int binomialCoeffSum( int n)
{
return (1 << n);
}
static public void Main()
{
int n = 4;
Console.WriteLine(binomialCoeffSum(n));
}
}
|
PHP
<?php
function binomialCoeffSum( $n )
{
return (1 << $n );
}
$n = 4;
echo binomialCoeffSum( $n );
?>
|
Javascript
<script>
function binomialCoeffSum(n)
{
return (1 << n);
}
let n = 4;
document.write(binomialCoeffSum(n));
</script>
|
Output:
16