Open In App
Related Articles

Check if a number is power of k using base changing method

Improve Article
Improve
Save Article
Save
Like Article
Like

This program checks whether a number n can be expressed as power of k and if yes, then to what power should k be raised to make it n. Following example will clarify : 
Examples: 
 

Input :   n = 16, k = 2 
Output :  yes : 4
Explanation : Answer is yes because 16 can 
be expressed as power of 2. 
                        
Input :   n = 27, k = 3 
Output :  yes : 3
Explanation : Answer is yes as 27 can be
expressed as power of 3.

Input :  n = 20, k = 5
Output : No
Explanation : Answer is No as 20 cannot 
be expressed as power of 5.  

 

We have discussed two methods in below post 
:Check if a number is a power of another number
In this post, a new Base Changing method is discussed.
In Base Changing Method, we simply change the base of number n to k and check if the first digit of Changed number is 1 and remaining all are zero.
Example for this : Let’s take n = 16 and k = 2. 
Change 16 to base 2. i.e. (10000)2. Since first digit is 1 and remaining are zero. Hence 16 can be expressed as power of 2. Count the length of (10000)2 and subtract 1 from it, that’ll be the number to which 2 must be raised to make 16. In this case 5 – 1 = 4.
Another example : Let’s take n = 20 and k = 3. 
20 in base 3 is (202)3. Since there are two non-zero digit, hence 20 cannot be expressed as power of 3.
 

C++




// CPP program to check if a number can be
// raised to k
#include <iostream>
#include <algorithm>
using namespace std;
 
bool isPowerOfK(unsigned int n, unsigned int k)
{
    // loop to change base n to base = k
    bool oneSeen = false;
    while (n > 0) {
 
        // Find current digit in base k
        int digit = n % k;
 
        // If digit is neither 0 nor 1
        if (digit > 1)
            return false;
 
        // Make sure that only one 1
        // is present.
        if (digit == 1)
        {
            if (oneSeen)
            return false;
            oneSeen = true;
        }    
 
        n /= k;
    }
     
    return true;
}
 
// Driver code
int main()
{
    int n = 64, k = 4;
 
    if (isPowerOfK(n ,k))
        cout << "Yes";
    else
        cout << "No";
}


Java




// Java program to check if a number can be
// raised to k
 
class GFG
{
    static boolean isPowerOfK(int n,int k)
    {
        // loop to change base n to base = k
        boolean oneSeen = false;
        while (n > 0)
        {
     
            // Find current digit in base k
            int digit = n % k;
     
            // If digit is neither 0 nor 1
            if (digit > 1)
                return false;
     
            // Make sure that only one 1
            // is present.
            if (digit == 1)
            {
                if (oneSeen)
                return false;
                oneSeen = true;
            }    
     
            n /= k;
        }
         
        return true;
    }
     
    // Driver code
    public static void main (String[] args)
    {
        int n = 64, k = 4;
     
        if (isPowerOfK(n ,k))
            System.out.print("Yes");
        else
            System.out.print("No");
    }
}
 
// This code is contributed by Anant Agarwal.


Python3




# Python program to
# check if a number can be
# raised to k
 
def isPowerOfK(n, k):
 
    # loop to change base
    # n to base = k
    oneSeen = False
    while (n > 0):
  
        # Find current digit in base k
        digit = n % k
  
        # If digit is neither 0 nor 1
        if (digit > 1):
            return False
  
        # Make sure that only one 1
        # is present.
        if (digit == 1):
         
            if (oneSeen):
                return False
            oneSeen = True
  
        n //= k
     
    return True
     
# Driver code
 
n = 64
k = 4
  
if (isPowerOfK(n , k)):
    print("Yes")
else:
    print("No")
 
# This code is contributed
# by Anant Agarwal.


C#




// C# program to check if a number can be
// raised to k
using System;
 
class GFG {
     
    static bool isPowerOfK(int n, int k)
    {
         
        // loop to change base n to base = k
        bool oneSeen = false;
        while (n > 0)
        {
     
            // Find current digit in base k
            int digit = n % k;
     
            // If digit is neither 0 nor 1
            if (digit > 1)
                return false;
     
            // Make sure that only one 1
            // is present.
            if (digit == 1)
            {
                if (oneSeen)
                    return false;
                     
                oneSeen = true;
            }
     
            n /= k;
        }
         
        return true;
    }
     
    // Driver code
    public static void Main ()
    {
        int n = 64, k = 4;
     
        if (isPowerOfK(n ,k))
            Console.WriteLine("Yes");
        else
            Console.WriteLine("No");
    }
}
 
// This code is contributed by vt_m.


PHP




<?php
// PHP program to check
// if a number can be
// raised to k
 
function isPowerOfK($n, $k)
{
    // loop to change base
    // n to base = k
    $oneSeen = false;
    while ($n > 0)
    {
 
        // Find current
        // digit in base k
        $digit = $n % $k;
 
        // If digit is
        // neither 0 nor 1
        if ($digit > 1)
            return false;
 
        // Make sure that
        // only one 1
        // is present.
        if ($digit == 1)
        {
            if ($oneSeen)
            return false;
            $oneSeen = true;
        }
 
        $n = (int)$n / $k;
    }
     
    return true;
}
 
// Driver code
$n = 64;
$k = 4;
 
if (isPowerOfK($n, $k))
    echo "Yes";
else
    echo "No";
 
// This code is contributed
// by ajit
?>


Javascript




<script>
// JavaScript program to check if a number can be
// raised to k
 
    function isPowerOfK(n,k)
    {
        // loop to change base n to base = k
        let oneSeen = false;
        while (n > 0)
        {
     
            // Find current digit in base k
            let digit = n % k;
     
            // If digit is neither 0 nor 1
            if (digit > 1)
                return false;
     
            // Make sure that only one 1
            // is present.
            if (digit == 1)
            {
                if (oneSeen)
                return false;
                oneSeen = true;
            }    
     
            n = Math.floor(n / k);
        }
         
        return true;
    }
 
// Driver Code
 
        let n = 64, k = 4;
     
        if (isPowerOfK(n ,k))
            document.write("Yes");
        else
            document.write("No");
         
</script>


Output: 
 

Yes

Time Complexity: O(logK n)

Space Complexity: O(1)

Optimized Approach:

This approach avoids the need to convert n to base k and check whether it can be represented using only the digits 0 and 1. It also avoids the need to track whether a 1 has already been seen. This results in a simpler and more efficient algorithm.

Here’s a step-by-step explanation of the code:

  1. Define the isPrime function which takes an integer n as input and returns true if n is prime, and false otherwise.
  2. Define the isSumOfPrimes function with parameter n.
  3. Loop over all numbers from 2 to n/2 (inclusive) as potential prime numbers, and check whether each one is a prime and whether the difference between n and that number is also a prime. The loop continues until the first pair of primes is found.
  4. If a pair of primes is found, return true. Otherwise, return false.
  5. In the main function, set n to the desired value.
  6. Call the isSumOfPrimes function with n.
  7. If the function returns true, print “Yes” to the console, indicating that n can be expressed as the sum of two prime numbers. Otherwise, print “No”.

C++




#include <iostream>
 
using namespace std;
 
bool isPowerOfK(int n, int k) {
    // Check for base cases
    if (n == 0 || k == 0 || k == 1) {
        return false;
    }
 
    // Check if n is a power of k
    while (n % k == 0) {
        n /= k;
    }
 
    return n == 1;
}
 
int main() {
    int n = 64, k = 4;
 
    if (isPowerOfK(n, k)) {
        cout << "Yes";
    } else {
        cout << "No";
    }
 
    return 0;
}


Java




class GFG {
    static boolean isPowerOfK(int n, int k) {
        // Check for base cases
        if (n == 0 || k == 0 || k == 1) {
            return false;
        }
 
        // Check if n is a power of k
        while (n % k == 0) {
            n /= k;
        }
 
        return n == 1;
    }
 
    public static void main(String[] args) {
        int n = 64, k = 4;
 
        if (isPowerOfK(n, k)) {
            System.out.print("Yes");
        } else {
            System.out.print("No");
        }
    }
}


Python3




def isPowerOfK(n, k):
    # Check for base cases
    if n == 0 or k == 0 or k == 1:
        return False
 
    # Check if n is a power of k
    while n % k == 0:
        n //= k
 
    return n == 1
 
n = 64
k = 4
 
if isPowerOfK(n, k):
    print("Yes")
else:
    print("No")


C#




using System;
 
class GFG {
  static bool IsPowerOfK(int n, int k)
  {
     
    // Check for base cases
    if (n == 0 || k == 0 || k == 1) {
      return false;
    }
 
    // Check if n is a power of k
    while (n % k == 0) {
      n /= k;
    }
 
    return n == 1;
  }
 
  static void Main(string[] args) {
    int n = 64, k = 4;
 
    if (IsPowerOfK(n, k)) {
      Console.Write("Yes");
    } else {
      Console.Write("No");
    }
  }
}


Javascript




function isPowerOfK(n, k) {
    // Check for base cases
    if (n === 0 || k === 0 || k === 1) {
        return false;
    }
 
    // Check if n is a power of k
    while (n % k === 0) {
        n = Math.floor(n / k);
    }
 
    return n === 1;
}
 
let n = 64;
let k = 4;
 
if (isPowerOfK(n, k)) {
    console.log("Yes");
} else {
    console.log("No");
}


OUTPUT:

YES

Time Complexity: O(logK n)

Space Complexity: O(1)

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 01 May, 2023
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials