Open In App
Related Articles

Padovan Sequence

Improve Article
Improve
Save Article
Save
Like Article
Like

Padovan Sequence similar to Fibonacci sequence with similar recursive structure. The recursive formula is, 
 

  P(n) = P(n-2) + P(n-3)
  P(0) = P(1) = P(2) = 1 

Fibonacci Sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55…… 
Spiral of squares with side lengths which follow the Fibonacci sequence. 
 

fibonacci-tiles1

Padovan Sequence: 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37,….. 
Spiral of equilateral triangles with side lengths which follow the Padovan sequence. 
 

Padovan_triangles_(1)

Examples: 
 

For Padovan Sequence:
P0 = P1 = P2 = 1 ,
P(7) = P(5) + P(4)
     = P(3) + P(2) + P(2) + P(1)
     = P(2) + P(1) + 1 + 1 + 1
     = 1 + 1 + 1 + 1 + 1 
     = 5

 

Recommended Practice

 

C++




// C++ program to find n'th term in Padovan Sequence
// using Dynamic Programming
#include<iostream>
using namespace std;
 
/* Function to calculate padovan number P(n) */
int pad(int n)
{
    /* 0th ,1st and 2nd number of the series are 1*/
    int pPrevPrev = 1, pPrev = 1, pCurr = 1, pNext = 1;
 
    for (int i=3; i<=n; i++)
    {
        pNext = pPrevPrev + pPrev;
        pPrevPrev = pPrev;
        pPrev = pCurr;
        pCurr = pNext;
    }
 
    return pNext;
}
 
/* Driver Program */
int main()
{
    int n = 12;
    cout << pad(n);
    return 0;
}

Java




// Java program to find n'th term
// in Padovan Sequence using
// Dynamic Programming
import java.io.*;
 
class GFG {
     
    /* Function to calculate
    padovan number P(n) */
    static int pad(int n)
    {
       int []padv=new int[n]; //create array to store padovan values
       padv[0]=padv[1]=padv[2]=1;
        for (int i = 3; i <= n; i++) {
         padv[i]=padv[i-2]+padv[i-3];  
        }
        return padv[n-1];
 
         
    }
 
    /* Driver Program */
    public static void main(String args[])
    {
        int n = 12;
        System.out.println(pad(n));
    }
}
 
/*This code is contributed by Kanjam Bhat Lidhoo.*/

Python3




# Python program to find n'th term in Padovan
# Sequence using Dynamic Programming
 
# Function to calculate padovan number P(n)
def pad(n):
 
    # 0th ,1st and 2nd number of the series are 1
    pPrevPrev, pPrev, pCurr, pNext = 1, 1, 1, 1
 
    # Find n'th Padovan number using recursive
    # formula.
    for i in range(3, n+1):
        pNext = pPrevPrev + pPrev
        pPrevPrev = pPrev
        pPrev = pCurr
        pCurr = pNext
 
    return pNext
 
# Driver Code
print (pad(12))

C#




// C# program to find n'th term
// in Padovan Sequence using
// Dynamic Programming
using System;
 
class GFG {
 
    /* Function to calculate
    padovan number P(n) */
    static int pad(int n)
    {
         
        /* 0th, 1st and 2nd number
        of the series are 1*/
        int pPrevPrev = 1, pPrev = 1,
            pCurr = 1, pNext = 1;
 
        for (int i = 3; i <= n; i++) {
            pNext = pPrevPrev + pPrev;
            pPrevPrev = pPrev;
            pPrev = pCurr;
            pCurr = pNext;
        }
 
        return pNext;
    }
 
    /* Driver Program */
    public static void Main()
    {
        int n = 12;
         
        Console.WriteLine(pad(n));
    }
}
 
/*This code is contributed by vt_m.*/

PHP




<?php
// PHP program to find n'th
// term in Padovan Sequence
// using Dynamic Programming
 
// Function to calculate
// padovan number P(n)
function pad($n)
{
     
    // 0th ,1st and 2nd number
    // of the series are 1
    $pPrevPrev = 1; $pPrev = 1;
    $pCurr = 1; $pNext = 1;
 
    for ($i = 3; $i <= $n; $i++)
    {
        $pNext = $pPrevPrev + $pPrev;
        $pPrevPrev = $pPrev;
        $pPrev = $pCurr;
        $pCurr = $pNext;
    }
 
    return $pNext;
}
 
// Driver Code
$n = 12;
echo(pad($n));
 
// This code is contributed by Ajit.
?>

Javascript




<script>
// Javascript program to find n'th
// term in Padovan Sequence
// using Dynamic Programming
 
// Function to calculate
// padovan number P(n)
function pad(n) {
 
    // 0th ,1st and 2nd number
    // of the series are 1
    let pPrevPrev = 1;
    let pPrev = 1;
    let pCurr = 1;
    let pNext = 1;
 
    for (let i = 3; i <= n; i++) {
        pNext = pPrevPrev + pPrev;
        pPrevPrev = pPrev;
        pPrev = pCurr;
        pCurr = pNext;
    }
 
    return pNext;
}
 
// Driver Code
let n = 12;
document.write(pad(n));
 
// This code is contributed by gfgking.
</script>

Output: 
 

21

This article is contributed by Shivam Pradhan(anuj_charm). If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 


Last Updated : 24 Jan, 2022
Like Article
Save Article
Similar Reads
Related Tutorials