Write a tail recursive function for calculating the n-th Fibonacci number.
Examples :
Input : n = 4
Output : fib(4) = 3
Input : n = 9
Output : fib(9) = 34
Prerequisites : Tail Recursion, Fibonacci numbers
A recursive function is tail recursive when the recursive call is the last thing executed by the function.
Writing a tail recursion is little tricky. To get the correct intuition, we first look at the iterative approach of calculating the n-th Fibonacci number.
int fib(int n)
{
int a = 0, b = 1, c, i;
if (n == 0)
return a;
for (i = 2; i <= n; i++)
{
c = a + b;
a = b;
b = c;
}
return b;
}
Here there are three possibilities related to n :-
n == 0
n == 1
n > 1
First two are trivial. We focus on discussion of the case when n > 1.
In our iterative approach for n > 1,
We start with
a = 0
b = 1
For n-1 times we repeat following for ordered pair (a,b)
Though we used c in actual iterative approach, but the main aim was as below :-
(a, b) = (b, a+b)
We finally return b after n-1 iterations.
Hence we repeat the same thing this time with the recursive approach. We set the default values
a = 0
b = 1
Here we’ll recursively call the same function n-1 times and correspondingly change the values of a and b.
Finally, return b.
If its case of n == 0 OR n == 1, we need not worry much!
Here is implementation of tail recursive fibonacci code.
C++
#include <iostream>
using namespace std;
int fib( int n, int a = 0, int b = 1)
{
if (n == 0)
return a;
if (n == 1)
return b;
return fib(n - 1, b, a + b);
}
int main()
{
int n = 9;
cout << "fib(" << n << ") = "
<< fib(n) << endl;
return 0;
}
|
Java
class GFG
{
static int fib( int n, int a, int b )
{
if (n == 0 )
return a;
if (n == 1 )
return b;
return fib(n - 1 , b, a + b);
}
public static void main (String[] args)
{
int n = 9 ;
System.out.println( "fib(" + n + ") = " +
fib(n, 0 , 1 ) );
}
}
|
Python3
def fib(n, a = 0 , b = 1 ):
if n = = 0 :
return a
if n = = 1 :
return b
return fib(n - 1 , b, a + b);
n = 9 ;
print ( "fib(" + str (n) + ") = " + str (fib(n)))
|
C#
using System;
class GFG
{
static int fib( int n, int a , int b )
{
if (n == 0)
return a;
if (n == 1)
return b;
return fib(n - 1, b, a + b);
}
public static void Main ()
{
int n = 9;
Console.Write( "fib(" + n + ") = " +
fib(n, 0, 1) );
}
}
|
PHP
<?php
function fib( $n , $a = 0, $b = 1)
{
if ( $n == 0)
return $a ;
if ( $n == 1)
return $b ;
return fib( $n - 1, $b , $a + $b );
}
$n = 9;
echo "fib($n) = " , fib( $n );
return 0;
?>
|
Javascript
<script>
function fib(n, a = 0, b = 1)
{
if (n == 0){
return a;
}
if (n == 1){
return b;
}
return fib(n - 1, b, a + b);
}
let n = 9;
document.write(`fib(${n}) = ${fib(n)}`);
</script>
|
Output :
fib(9) = 34
Analysis of Algorithm
Time Complexity: O(n)
Auxiliary Space : O(n)
This article is contributed by Pratik Chhajer. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.