# Sum of squares of binomial coefficients

Given a positive integer n. The task is to find the sum of square of Binomial Coefficient i.e
nC02 + nC12 + nC22 + nC32 + ……… + nCn-22 + nCn-12 + nCn2
Examples:

Input : n = 4
Output : 70

Input : n = 5
Output : 252

Method 1: (Brute Force)
The idea is to generate all the terms of binomial coefficient and find the sum of square of each binomial coefficient.
Below is the implementation of this approach:

## C++

 // CPP Program to find the sum of square of  // binomial coefficient. #include using namespace std;   // Return the sum of square of binomial coefficient int sumofsquare(int n) {     int C[n+1][n+1];     int i, j;       // Calculate value of Binomial Coefficient     // in bottom up manner     for (i = 0; i <= n; i++)     {         for (j = 0; j <= min(i, n); j++)         {             // Base Cases             if (j == 0 || j == i)                 C[i][j] = 1;               // Calculate value using previously             // stored values             else                 C[i][j] = C[i-1][j-1] + C[i-1][j];         }     }               // Finding the sum of square of binomial      // coefficient.     int sum = 0;     for (int i = 0; i <= n; i++)             sum += (C[n][i] * C[n][i]);               return sum; }   // Driven Program int main() {     int n = 4;         cout << sumofsquare(n) << endl;     return 0; }

## Java

 // Java Program to find the sum of  // square of binomial coefficient. import static java.lang.Math.*;   class GFG{               // Return the sum of square of      // binomial coefficient     static int sumofsquare(int n)     {         int[][] C = new int [n+1][n+1] ;         int i, j;               // Calculate value of Binomial          // Coefficient in bottom up manner         for (i = 0; i <= n; i++)         {             for (j = 0; j <= min(i, n); j++)             {                 // Base Cases                 if (j == 0 || j == i)                     C[i][j] = 1;                       // Calculate value using                  //previously stored values                 else                     C[i][j] = C[i-1][j-1]                               + C[i-1][j];             }         }                    // Finding the sum of square of          // binomial coefficient.         int sum = 0;         for (i = 0; i <= n; i++)              sum += (C[n][i] * C[n][i]);                    return sum;     }           // Driver function     public static void main(String[] args)     {         int n = 4;                    System.out.println(sumofsquare(n));     }  }   // This code is contributed by  // Smitha Dinesh Semwal

## Python3

 # Python Program to find  # the sum of square of # binomial coefficient.   # Return the sum of  # square of binomial # coefficient def sumofsquare(n) :           C = [[0 for i in range(n + 1)]              for j in range(n + 1)]                   # Calculate value of      # Binomial Coefficient      # in bottom up manner     for i in range(0, n + 1) :               for j in range(0, min(i, n) + 1) :                                   # Base Cases             if (j == 0 or j == i) :                 C[i][j] = 1               # Calculate value              # using previously             # stored values             else :                 C[i][j] = (C[i - 1][j - 1] +                            C[i - 1][j])             # Finding the sum of      # square of binomial      # coefficient.     sum = 0     for i in range(0, n + 1) :         sum = sum + (C[n][i] *                      C[n][i])            return sum     # Driver Code n = 4 print (sumofsquare(n), end="\n")       # This code is contributed by  # Manish Shaw(manishshaw1)

## C#

 // C# Program to find the sum of  // square of binomial coefficient. using System;   class GFG {               // Return the sum of square of      // binomial coefficient     static int sumofsquare(int n)     {         int[,] C = new int [n+1,n+1] ;         int i, j;               // Calculate value of Binomial          // Coefficient in bottom up manner         for (i = 0; i <= n; i++)         {             for (j = 0; j <= Math.Min(i, n); j++)             {                 // Base Cases                 if (j == 0 || j == i)                     C[i,j] = 1;                       // Calculate value using                  //previously stored values                 else                     C[i,j] = C[i-1,j-1]                              + C[i-1,j];             }         }                    // Finding the sum of square of          // binomial coefficient.         int sum = 0;         for (i = 0; i <= n; i++)              sum += (C[n,i] * C[n,i]);                    return sum;     }           // Driver function     public static void Main()     {         int n = 4;                    Console.WriteLine(sumofsquare(n));     }  }   // This code is contributed by vt_m.

## PHP

 

## Javascript

 

Output:

70

Time Complexity: O(n2)
Space Complexity: O(n2)

Method 2: (Using Formula)

Proof,

We know,
(1 + x)n = nC0 + nC1 x + nC2 x2 + ......... + nCn-1 xn-1 + nCn-1 xn
Also,
(x + 1)n = nC0 xn + nC1 xn-1 + nC2 xn-2 + ......... + nCn-1 x + nCn

Multiplying above two equations,
(1 + x)2n = [nC0 + nC1 x + nC2 x2 + ......... + nCn-1 xn-1 + nCn-1 xn] X
[nC0 xn + nC1 xn-1 + nC2 xn-2 + ......... + nCn-1 x + nCn]

Equating coefficients of xn on both sides, we get
2nCn = nC02 + nC12 + nC22 + nC32 + ......... + nCn-22 + nCn-12 + nCn2

Hence, sum of the squares of coefficients = 2nCn = (2n)!/(n!)2.

Also, (2n)!/(n!)2 = (2n * (2n – 1) * (2n – 2) * ….. * (n+1))/(n * (n – 1) * (n – 2) *….. * 1).
Below is the implementation of this approach:

## C++

 // CPP Program to find the sum of square of  // binomial coefficient. #include using namespace std;   // function to return product of number  // from start to end. int factorial(int start, int end) {     int res = 1;     for (int i = start; i <= end; i++)         res *= i;               return res; }   // Return the sum of square of binomial // coefficient int sumofsquare(int n) {     return factorial(n+1, 2*n)/factorial(1, n); }   // Driven Program int main() {     int n = 4;         cout << sumofsquare(n) << endl;     return 0; }

## Java

 // Java Program to find the sum of square of  // binomial coefficient. class GFG{           // function to return product of number      // from start to end.     static int factorial(int start, int end)     {         int res = 1;         for (int i = start; i <= end; i++)             res *= i;                       return res;     }           // Return the sum of square of binomial     // coefficient     static int sumofsquare(int n)     {         return factorial(n+1, 2*n)/factorial(1, n);     }           // Driven Program     public static void main(String[] args)     {         int n = 4;          System.out.println(sumofsquare(n));     }  }    // This code is contributed by // Smitha DInesh Semwal

## Python

 # Python 3 Program to find the sum of  # square of binomial coefficient.   # function to return product of number  # from start to end. def factorial(start, end):       res = 1           for i in range(start, end + 1):         res *= i               return res   # Return the sum of square of binomial # coefficient def sumofsquare(n):       return int(factorial(n + 1, 2 * n)                      /factorial(1, n))   # Driven Program   n = 4 print(sumofsquare(n))     # This code is contributed by # Smitha Dinesh Semwal

## C#

 // C# Program to find the sum of square of  // binomial coefficient. using System;   class GFG {           // function to return product of number      // from start to end.     static int factorial(int start, int end)     {         int res = 1;                   for (int i = start; i <= end; i++)             res *= i;                       return res;     }           // Return the sum of square of binomial     // coefficient     static int sumofsquare(int n)     {         return factorial(n+1, 2*n)/factorial(1, n);     }           // Driven Program     public static void Main()     {         int n = 4;                    Console.WriteLine(sumofsquare(n));     }  }    // This code is contributed by vt_m.

## PHP

 

## Javascript

 

Output:

70

Time Complexity: O(n)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Previous
Next