Vantieghems Theorem for Primality Test
Vantieghems Theorem is a necessary and sufficient condition for a number to be prime. It states that for a natural number n to be prime, the product of where
, is congruent to
.
In other words, a number n is prime if and only if.
Examples:
- For n = 3, final product is (21 – 1) * (22 – 1) = 1*3 = 3. 3 is congruent to 3 mod 7. We get 3 mod 7 from expression 3 * (mod (23 – 1)), therefore 3 is prime.
- For n = 5, final product is 1*3*7*15 = 315. 315 is congruent to 5(mod 31), therefore 5 is prime.
- For n = 7, final product is 1*3*7*15*31*63 = 615195. 615195 is congruent to 7(mod 127), therefore 7 is prime.
- For n = 4, final product 1*3*7 = 21. 21 is not congruent to 4(mod 15), therefore 4 is composite.
Another way to state above theorem is, if divides
, then n is prime.
C++
// C++ code to verify Vantieghem's Theorem #include <bits/stdc++.h> using namespace std; void checkVantieghemsTheorem( int limit) { long long unsigned prod = 1; for ( long long unsigned n = 2; n < limit; n++) { // Check if above condition is satisfied if (((prod - n) % ((1LL << n) - 1)) == 0) cout << n << " is prime\n" ; // product of previous powers of 2 prod *= ((1LL << n) - 1); } } // Driver code int main() { checkVantieghemsTheorem(10); return 0; } |
Java
// Java code to verify Vantieghem's Theorem import java.util.*; class GFG { static void checkVantieghemsTheorem( int limit) { long prod = 1 ; for ( long n = 2 ; n < limit; n++) { // Check if above condition is satisfied if (((prod - n < 0 ? 0 : prod - n) % (( 1 << n) - 1 )) == 0 ) System.out.print(n + " is prime\n" ); // product of previous powers of 2 prod *= (( 1 << n) - 1 ); } } // Driver code public static void main(String []args) { checkVantieghemsTheorem( 10 ); } } // This code is contributed by rutvik_56. |
Python3
# Python3 code to verify Vantieghem's Theorem def checkVantieghemsTheorem(limit): prod = 1 for n in range ( 2 , limit): # Check if above condition is satisfied if n = = 2 : print ( 2 , "is prime" ) if (((prod - n) % (( 1 << n) - 1 )) = = 0 ): print (n, "is prime" ) # Product of previous powers of 2 prod * = (( 1 << n) - 1 ) # Driver code checkVantieghemsTheorem( 10 ) # This code is contributed by shubhamsingh10 |
C#
// C# code to verify Vantieghem's Theorem using System; class GFG { static void checkVantieghemsTheorem( int limit) { long prod = 1; for ( long n = 2; n < limit; n++) { // Check if above condition is satisfied if (((prod - n < 0 ? 0 : prod - n) % ((1 << ( int )n) - 1)) == 0) Console.Write(n + " is prime\n" ); // product of previous powers of 2 prod *= ((1 << ( int )n) - 1); } } // Driver code public static void Main() { checkVantieghemsTheorem(10); } } // This code is contributed by pratham76. |
Javascript
<script> // Javascript code to verify Vantieghem's Theorem function checkVantieghemsTheorem( limit) { let prod = 1; for (let n = 2; n < limit; n++) { // Check if above condition is satisfied if (n == 2) document.write(2 + " is prime" + "</br>" ); if (((prod - n) % ((1 << n) - 1)) == 0) document.write( n + " is prime" + "</br>" ); // product of previous powers of 2 prod *= ((1 << n) - 1); } } // Driver Code checkVantieghemsTheorem(10); // This code is contributed by jana_sayantan. </script> |
Output:
2 is prime 3 is prime 5 is prime 7 is prime
Time Complexity : O(limit)
Auxiliary Space: O(1)
The above code does not work for values of n higher than 11. It causes overflow in prod evaluation.
Please Login to comment...