Open In App
Related Articles

GCD, LCM and Distributive Property

Improve Article
Improve
Save Article
Save
Like Article
Like

Given three integers x, y, z, the task is to compute the value of GCD(LCM(x,y), LCM(x,z))
Where, GCD = Greatest Common Divisor, LCM = Least Common Multiple
Examples: 
 

Input: x = 15, y = 20, z = 100
Output: 60

Input: x = 30, y = 40, z = 400
Output: 120

One way to solve it is by finding GCD(x, y), and using it we find LCM(x, y). Similarly, we find LCM(x, z) and then we finally find the GCD of the obtained results.
An efficient approach can be done by the fact that the following version of distributivity holds true:
GCD(LCM (x, y), LCM (x, z)) = LCM(x, GCD(y, z))
For example, GCD(LCM(3, 4), LCM(3, 10)) = LCM(3, GCD(4, 10)) = LCM(3, 2) = 6 
This reduces our work to compute the given problem statement. 
 

C++




// C++ program to compute value of GCD(LCM(x,y), LCM(x,z))
#include<bits/stdc++.h>
using namespace std;
 
// Returns value of  GCD(LCM(x,y), LCM(x,z))
int findValue(int x, int y, int z)
{
    int g = __gcd(y, z);
 
    // Return LCM(x, GCD(y, z))
    return (x*g)/__gcd(x, g);
}
 
int main()
{
    int x = 30, y = 40, z = 400;
    cout << findValue(x, y, z);
    return 0;
}


Java




// Java program to compute value
// of GCD(LCM(x,y), LCM(x,z))
 
class GFG {
    // Recursive function to
    // return gcd of a and b
    static int __gcd(int a, int b)
    {
        // base case Everything divides 0
        if (b == 0)
            return a;
 
        return __gcd(b, a % b);
    }
 
    // Returns value of GCD(LCM(x,y), LCM(x,z))
    static int findValue(int x, int y, int z)
    {
        int g = __gcd(y, z);
 
        // Return LCM(x, GCD(y, z))
        return (x * g) / __gcd(x, g);
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int x = 30, y = 40, z = 400;
        System.out.print(findValue(x, y, z));
    }
}
 
// This code is contributed by Anant Agarwal.


Python3




# Python program to compute
# value of GCD(LCM(x,y), LCM(x,z))
 
# Recursive function to
# return gcd of a and b
 
 
def __gcd(a, b):
 
    # Everything divides 0
    if (b == 0):
        return a
 
    return __gcd(b, a % b)
 
# Returns value of
#  GCD(LCM(x,y), LCM(x,z))
 
def findValue(x, y, z):
 
    g = __gcd(y, z)
 
    # Return LCM(x, GCD(y, z))
    return (x*g)/__gcd(x, g)
 
 
# driver code
x = 30
y = 40
z = 400
print("%d" % findValue(x, y, z))
 
# This code is contributed
# by Anant Agarwal.


C#




// C# program to compute value
// of GCD(LCM(x,y), LCM(x,z))
using System;
 
class GFG {
     
    // Recursive function to
    // return gcd of a and b
    static int __gcd(int a, int b)
    {
        // base case Everything divides 0
        if (b == 0)
            return a;
 
        return __gcd(b, a % b);
    }
     
    // Returns value of GCD(LCM(x,y),
    // LCM(x,z))
    static int findValue(int x, int y, int z)
    {
        int g = __gcd(y, z);
     
        // Return LCM(x, GCD(y, z))
        return (x*g) / __gcd(x, g);
    }
     
    // Driver code
    public static void Main ()
    {
        int x = 30, y = 40, z = 400;
         
        Console.Write(findValue(x, y, z));
    }
}
 
// This code is contributed by
// Smitha Dinesh Semwal.


PHP




<?php
// PHP program to compute value
// of GCD(LCM(x,y), LCM(x,z))
 
// Recursive function to
// return gcd of a and b
function __gcd( $a, $b)
{
     
    // Everything divides 0
    if ($b == 0)
    return $a;
 
     
    return __gcd($b, $a % $b);
}
 
// Returns value of GCD(LCM(x,y),
// LCM(x,z))
function findValue($x, $y, $z)
{
    $g = __gcd($y, $z);
 
    // Return LCM(x, GCD(y, z))
    return ($x * $g)/__gcd($x, $g);
}
 
    // Driver Code
    $x = 30;
    $y = 40;
    $z = 400;
    echo findValue($x, $y, $z);
 
// This code is contributed by anuj_67.
?>


Javascript




<script>
// JavaScript program to compute value of GCD(LCM(x,y), LCM(x,z))
function __gcd( a,  b)
    {
        // Everything divides 0
        if (b == 0)
            return a;
     
        return __gcd(b, a % b);
    }
// Returns value of  GCD(LCM(x,y), LCM(x,z))
function findValue(x, y, z)
{
    let g = __gcd(y, z);
 
    // Return LCM(x, GCD(y, z))
    return (x*g)/__gcd(x, g);
}
 
    let x = 30, y = 40, z = 400;
    document.write( findValue(x, y, z));
 
// This code contributed by gauravrajput1
 
</script>


Output

120

Time Complexity: O(log(min(a,b))
Auxiliary Space: O(log(min(a,b))

As a side note, vice versa is also true, i.e., gcd(x, lcm(y, z)) = lcm(gcd(x, y), gcd(x, z)
Reference: 
https://en.wikipedia.org/wiki/Distributive_property#Other_examples
If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 14 Feb, 2023
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials