Find the Factorial of a large number
Find the factorial of a large number.
What is Factorial of a number?
Factorial of a non-negative integer, is the multiplication of all integers smaller than or equal to n.
Factorial of a number
Examples:
Input: 100
Output: 933262154439441526816992388562667004-
907159682643816214685929638952175999-
932299156089414639761565182862536979-
208272237582511852109168640000000000-
00000000000000Input: 50
Output: 3041409320171337804361260816606476884-
4377641568960512000000000000
We have discussed a simple program for factorial.
Why conventional way of computing factorial fails for large numbers?
A factorial of 100 has 158 digits. It is not possible to store these many digits even if we use long int.
The idea is to use basic mathematics for multiplication.
Illustration:
Example to show working of multiply(res[], x)
- A number 5189 is stored in res[] as following: res[] = {9, 8, 1, 5}
- let x = 10
Initialize carry = 0
- At i = 0, prod = res[0]*x + carry = 9*10 + 0 = 90.
res[0] = 0, carry = 9
- At i = 1, prod = res[1]*x + carry = 8*10 + 9 = 89
res[1] = 9, carry = 8
- At i = 2, prod = res[2]*x + carry = 1*10 + 8 = 18
res[2] = 8, carry = 1
- At i = 3, prod = res[3]*x + carry = 5*10 + 1 = 51
res[3] = 1, carry = 5
- res[4] = carry = 5
res[] = {0, 9, 8, 1, 5}
Follow the steps below to solve the given problem:
- Create an array res[] of MAX size where MAX is a number of maximum digits in output.
- Initialize value stored in res[] as 1 and initialize res_size (size of ‘res[]’) as 1.
- Multiply x with res[] and update res[] and res_size to store the multiplication result for all the numbers from x = 2 to n.
- To multiply a number x with the number stored in res[], one by one multiply x with every digit of res[].
- To implement multiply function perform the following steps:
- Initialize carry as 0.
- Do following for i = 0 to res_size – 1
- Find value of res[i] * x + carry. Let this value be prod.
- Update res[i] by storing the last digit of prod in it.
- Update carry by storing the remaining digits in carry.
- Put all digits of carry in res[] and increase res_size by the number of digits in carry.
Below is the implementation of the above algorithm.
NOTE: In the below implementation, the maximum digits in the output are assumed as 500. To find a factorial of a much larger number ( > 254), increase the size of an array or increase the value of MAX. This can also be solved using Linked List instead of using res[] array which will not waste extra space.
C++
// C++ program to compute factorial of big numbers #include <iostream> using namespace std; // Maximum number of digits in output #define MAX 500 int multiply( int x, int res[], int res_size); // This function finds factorial of large numbers // and prints them void factorial( int n) { int res[MAX]; // Initialize result res[0] = 1; int res_size = 1; // Apply simple factorial formula n! = 1 * 2 * 3 // * 4...*n for ( int x = 2; x <= n; x++) res_size = multiply(x, res, res_size); cout << "Factorial of given number is \n" ; for ( int i = res_size - 1; i >= 0; i--) cout << res[i]; } // This function multiplies x with the number // represented by res[]. // res_size is size of res[] or number of digits in the // number represented by res[]. This function uses simple // school mathematics for multiplication. // This function returns the // new value of res_size int multiply( int x, int res[], int res_size) { int carry = 0; // Initialize carry // One by one multiply n with individual digits of res[] for ( int i = 0; i < res_size; i++) { int prod = res[i] * x + carry; // Store last digit of 'prod' in res[] res[i] = prod % 10; // Put rest in carry carry = prod / 10; } // Put carry in res and increase result size while (carry) { res[res_size] = carry % 10; carry = carry / 10; res_size++; } return res_size; } // Driver program int main() { factorial(100); return 0; } |
Java
// JAVA program to compute factorial // of big numbers class GFG { // This function finds factorial of // large numbers and prints them static void factorial( int n) { int res[] = new int [ 500 ]; // Initialize result res[ 0 ] = 1 ; int res_size = 1 ; // Apply simple factorial formula // n! = 1 * 2 * 3 * 4...*n for ( int x = 2 ; x <= n; x++) res_size = multiply(x, res, res_size); System.out.println( "Factorial of given number is " ); for ( int i = res_size - 1 ; i >= 0 ; i--) System.out.print(res[i]); } // This function multiplies x with the number // represented by res[]. res_size is size of res[] or // number of digits in the number represented by res[]. // This function uses simple school mathematics for // multiplication. This function may value of res_size // and returns the new value of res_size static int multiply( int x, int res[], int res_size) { int carry = 0 ; // Initialize carry // One by one multiply n with individual // digits of res[] for ( int i = 0 ; i < res_size; i++) { int prod = res[i] * x + carry; res[i] = prod % 10 ; // Store last digit of // 'prod' in res[] carry = prod / 10 ; // Put rest in carry } // Put carry in res and increase result size while (carry != 0 ) { res[res_size] = carry % 10 ; carry = carry / 10 ; res_size++; } return res_size; } // Driver program public static void main(String args[]) { factorial( 100 ); } } // This code is contributed by Nikita Tiwari |
Python3
# Python program to compute factorial # of big numbers import sys # This function finds factorial of large # numbers and prints them def factorial(n): res = [ None ] * 500 # Initialize result res[ 0 ] = 1 res_size = 1 # Apply simple factorial formula # n! = 1 * 2 * 3 * 4...*n x = 2 while x < = n: res_size = multiply(x, res, res_size) x = x + 1 print ( "Factorial of given number is" ) i = res_size - 1 while i > = 0 : sys.stdout.write( str (res[i])) sys.stdout.flush() i = i - 1 # This function multiplies x with the number # represented by res[]. res_size is size of res[] # or number of digits in the number represented # by res[]. This function uses simple school # mathematics for multiplication. This function # may value of res_size and returns the new value # of res_size def multiply(x, res, res_size): carry = 0 # Initialize carry # One by one multiply n with individual # digits of res[] i = 0 while i < res_size: prod = res[i] * x + carry res[i] = prod % 10 # Store last digit of # 'prod' in res[] # make sure floor division is used carry = prod / / 10 # Put rest in carry i = i + 1 # Put carry in res and increase result size while (carry): res[res_size] = carry % 10 # make sure floor division is used # to avoid floating value carry = carry / / 10 res_size = res_size + 1 return res_size # Driver program factorial( 100 ) # This code is contributed by Nikita Tiwari. |
C#
// C# program to compute // factorial of big numbers using System; class GFG { // This function finds factorial // of large numbers and prints them static void factorial( int n) { int [] res = new int [500]; // Initialize result res[0] = 1; int res_size = 1; // Apply simple factorial formula // n! = 1 * 2 * 3 * 4...*n for ( int x = 2; x <= n; x++) res_size = multiply(x, res, res_size); Console.WriteLine( "Factorial of " + "given number is " ); for ( int i = res_size - 1; i >= 0; i--) Console.Write(res[i]); } // This function multiplies x // with the number represented // by res[]. res_size is size // of res[] or number of digits // in the number represented by // res[]. This function uses // simple school mathematics for // multiplication. This function // may value of res_size and // returns the new value of res_size static int multiply( int x, int [] res, int res_size) { int carry = 0; // Initialize carry // One by one multiply n with // individual digits of res[] for ( int i = 0; i < res_size; i++) { int prod = res[i] * x + carry; res[i] = prod % 10; // Store last digit of // 'prod' in res[] carry = prod / 10; // Put rest in carry } // Put carry in res and // increase result size while (carry != 0) { res[res_size] = carry % 10; carry = carry / 10; res_size++; } return res_size; } // Driver Code static public void Main() { factorial(100); } } // This code is contributed by ajit |
PHP
<?php // PHP program to compute factorial // of big numbers // Maximum number of digits in output $MAX = 500; // This function finds factorial of // large numbers and prints them function factorial( $n ) { global $MAX ; $res = array_fill (0, $MAX , 0); // Initialize result $res [0] = 1; $res_size = 1; // Apply simple factorial formula // n! = 1 * 2 * 3 * 4...*n for ( $x = 2; $x <= $n ; $x ++) $res_size = multiply( $x , $res , $res_size ); echo "Factorial of given number is \n" ; for ( $i = $res_size - 1; $i >= 0; $i --) echo $res [ $i ]; } // This function multiplies x with the number // represented by res[]. // res_size is size of res[] or number of // digits in the number represented by res[]. // This function uses simple school mathematics // for multiplication. This function may value // of res_size and returns the new value of res_size function multiply( $x , & $res , $res_size ) { $carry = 0; // Initialize carry // One by one multiply n with individual // digits of res[] for ( $i = 0; $i < $res_size ; $i ++) { $prod = $res [ $i ] * $x + $carry ; // Store last digit of 'prod' in res[] $res [ $i ] = $prod % 10; // Put rest in carry $carry = (int)( $prod / 10); } // Put carry in res and increase // result size while ( $carry ) { $res [ $res_size ] = $carry % 10; $carry = (int)( $carry / 10); $res_size ++; } return $res_size ; } // Driver Code factorial(100); // This code is contributed by chandan_jnu ?> |
Javascript
<script> // Javascript program to compute factorial of big numbers // This function finds factorial of large numbers // and prints them function factorial(n) { let res = new Array(500); // Initialize result res[0] = 1; let res_size = 1; // Apply simple factorial formula n! = 1 * 2 * 3 * 4...*n for (let x=2; x<=n; x++) res_size = multiply(x, res, res_size); document.write( "Factorial of given number is " + "<br>" ); for (let i=res_size-1; i>=0; i--) document.write(res[i]); } // This function multiplies x with the number // represented by res[]. // res_size is size of res[] or number of digits in the // number represented by res[]. This function uses simple // school mathematics for multiplication. // This function may value of res_size and returns the // new value of res_size function multiply(x, res, res_size) { let carry = 0; // Initialize carry // One by one multiply n with individual digits of res[] for (let i=0; i<res_size; i++) { let prod = res[i] * x + carry; // Store last digit of 'prod' in res[] res[i] = prod % 10; // Put rest in carry carry = Math.floor(prod/10); } // Put carry in res and increase result size while (carry) { res[res_size] = carry%10; carry = Math.floor(carry/10); res_size++; } return res_size; } // Driver program factorial(100); // This code is contributed by Mayank Tyagi </script> |
Factorial of given number is 93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000
Time Complexity: O(N log (N!)), where O(N) is for loop and O(log N!) is for nested while loop
Auxiliary Space: O(max(digits in factorial))
Find the Factorial of a large number using Basic BigInteger
This problem can be solved using the below idea:
Big Integer can also be used to calculate the factorial of large numbers.
Illustration:
N = 5
ans = 1
At i = 2: ans = ans x i = 1 x 2 = 2
At i = 3: ans = ans x i = 2 x 3 = 6
At i = 4: ans = ans x i = 6 x 4 = 24
At i = 5: ans = ans x i = 24 x 5 = 120Hence factorial of N is 120
Follow the steps below to solve the given problem:
- Declare a BigInteger f with 1 and perform the conventional way of calculating factorial
- Traverse a loop from x = 2 to N and multiply x with f and store the resultant value in f
Below is the implementation of the above idea :
C++
// C++ program to find large // factorials using BigInteger #include <bits/stdc++.h> using namespace std; #define ull unsigned long long // Returns Factorial of N ull factorial( int N) { // Initialize result ull f = 1; // Or BigInt 1 // Multiply f with 2, 3, ...N for (ull i = 2; i <= N; i++) f *= i; return f; } // Driver method int main() { int N = 20; cout << factorial(N) << endl; } // This code is contributed by phasing17 |
Java
// Java program to find large // factorials using BigInteger import java.math.BigInteger; import java.util.Scanner; public class Example { // Returns Factorial of N static BigInteger factorial( int N) { // Initialize result BigInteger f = new BigInteger( "1" ); // Or BigInteger.ONE // Multiply f with 2, 3, ...N for ( int i = 2 ; i <= N; i++) f = f.multiply(BigInteger.valueOf(i)); return f; } // Driver method public static void main(String args[]) throws Exception { int N = 20 ; System.out.println(factorial(N)); } } |
Python3
# Python3 program to find large # factorials # Returns Factorial of N def factorial(N): # Initialize result f = 1 # Multiply f with 2, 3, ...N for i in range ( 2 , N + 1 ): f * = i return f; # Driver method N = 20 ; print (factorial(N)); # This code is contributed by phasing17 |
C#
// C# program to find large // factorials using BigInteger using System; using System.Collections.Generic; using System.Numerics; public class Example { // Returns Factorial of N static BigInteger factorial( int N) { // Initialize result BigInteger f = new BigInteger(1); // Or BigInteger.ONE // Multiply f with 2, 3, ...N for ( int i = 2; i <= N; i++) f = BigInteger.Multiply(f, new BigInteger(i)); return f; } // Driver method public static void Main( string [] args) { int N = 20; Console.WriteLine(factorial(N)); } } // This code is contributed by phasing17 |
Javascript
// JavaScript program to find large // factorials using BigInteger // Returns Factorial of N function factorial(N) { // Initialize result let f = BigInt(1); // Or BigInt 1 // Multiply f with 2, 3, ...N for ( var i = 2; i <= N; i++) f *= BigInt(i); return f; } // Driver method let N = 20; console.log(factorial(N)); // This code is contributed by phasing17 |
2432902008176640000
Time Complexity: O(n)
Auxiliary Space: O(1)
Method 3:
1. Define a function factorial(n) that takes an integer n as input.
2. Check if n is 0 or 1. If it is, return 1.
3. If n is greater than 1, call the function recursively with input n-1 and store the result in a variable called sub_result.
4. Multiply sub_result with n and return the product as the final result.
C++
#include <iostream> #include <vector> using namespace std; vector< int > multiply(vector< int >& digits, int factor) { int carry = 0; for ( int i = 0; i < digits.size(); i++) { int prod = digits[i] * factor + carry; digits[i] = prod % 10; carry = prod / 10; } while (carry) { digits.push_back(carry % 10); carry /= 10; } return digits; } void print(vector< int >& digits) { for ( int i = digits.size() - 1; i >= 0; i--) { cout << digits[i]; } } int main() { int n = 100; vector< int > digits; digits.push_back(1); for ( int i = 2; i <= n; i++) { digits = multiply(digits, i); } print(digits); return 0; } |
Java
import java.math.BigInteger; public class Main { public static void main(String[] args) { int n = 100 ; BigInteger result = BigInteger.valueOf( 1 ); for ( int i = 1 ; i <= n; i++) { result = result.multiply(BigInteger.valueOf(i)); } System.out.println(result); } } |
Python3
import math n = 100 result = math.factorial(n) print (result) |
Javascript
function factorial(n) { let result = BigInt(1); for (let i = 2; i <= n; i++) { result *= BigInt(i); } return result; } // Set the value of n const n = 100; // Calculate the factorial of n using the math library const result = factorial(n); // Print the result console.log(result); |
C#
// C# program for the above approach using System; using System.Collections.Generic; class MainClass { // Function to multiply the two integers static List< int > Multiply(List< int > digits, int factor) { int carry = 0; for ( int i = 0; i < digits.Count; i++) { int prod = digits[i] * factor + carry; digits[i] = prod % 10; carry = prod / 10; } while (carry > 0) { digits.Add(carry % 10); carry /= 10; } // Return the digits return digits; } // Print the list static void Print(List< int > digits) { for ( int i = digits.Count - 1; i >= 0; i--) { Console.Write(digits[i]); } } // Driver Code static void Main() { int n = 100; List< int > digits = new List< int >(); digits.Add(1); for ( int i = 2; i <= n; i++) { digits = Multiply(digits, i); } Print(digits); } } |
93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000
Time Complexity: O(n)
The time complexity of the code is O(n), where n is the value of the input parameter. This is because the math.factorial() function internally uses a loop to calculate the product of all integers from 1 to n, and the loop iterates n times. Therefore, the time taken by the function is proportional to n.
Auxiliary Space: O(1)
The auxiliary space complexity of the code is O(1), because the code uses only a constant amount of additional memory to store the result of the factorial calculation. Specifically, the memory required to store the result is proportional to the number of digits in the result, which is roughly log10(n!), or O(log n), but this is negligible compared to the input size for large values of n.
Please Login to comment...