Given an integer n, print m increasing numbers such that the sum of m numbers is equal to n and the GCD of m numbers is maximum among all series possible. If no series is possible then print “-1”.
Examples :
Input : n = 24,
m = 3
Output : 4 8 12
Explanation : (3, 6, 15) is also a series
of m numbers which sums to N, but gcd = 3
(4, 8, 12) has gcd = 4 which is the maximum
possible.
Input : n = 6
m = 4
Output : -1
Explanation: It is not possible as the
least GCD sequence will be 1+2+3+4 which
is greater than n, hence print -1.
Approach:
The most common observation is that the gcd of the series will always be a divisor of n. The maximum gcd possible (say b) will be n/sum, where sum is the sum of 1+2+..m.
If b turns out to be 0, then the sum of 1+2+3..+k exceeds n which is invalid, hence output “-1”.
Traverse to find out all the divisors possible, a loop till sqrt(n). If the current divisor is i, the best possible way to take the series will be to consider i, 2*i, 3*i, …(m-1)*i, and their sum is s which is equal to i * (m*(m-1))/2 . The last number will be n-s.
Along with i being the divisor, n/i will be the other divisor so check for that also.
Take maximum of possible divisor possible (say r) which should be less than or equals to b and print the sequence as r, 2*r, … (m-1)*r, n—s.
If no such divisors are found simply output “-1”.
C++
#include <bits/stdc++.h>
using namespace std;
void print_sequence( int n, int k)
{
int b = n / (k * (k + 1) / 2);
if (b == 0) {
cout << -1 << endl;
} else {
int r = 1;
for ( int x = 1; x * x <= n; x++) {
if (n % x != 0)
continue ;
if (x <= b && x > r)
r = x;
if (n / x <= b && n / x > r)
r = n / x;
}
for ( int i = 1; i < k; i++)
cout << r * i << " " ;
int res = n - (r * (k * (k - 1) / 2));
cout << res << endl;
}
}
int main()
{
int n = 24;
int k = 4;
print_sequence(n, k);
n = 24, k = 5;
print_sequence(n, k);
n = 6, k = 4;
print_sequence(n, k);
}
|
Java
import java.io.*;
class GFG {
static void print_sequence( int n, int k)
{
int b = n / (k * (k + 1 ) / 2 );
if (b == 0 ) {
System.out.println( "-1" );
} else {
int r = 1 ;
for ( int x = 1 ; x * x <= n; x++) {
if (n % x != 0 )
continue ;
if (x <= b && x > r)
r = x;
if (n / x <= b && n / x > r)
r = n / x;
}
for ( int i = 1 ; i < k; i++)
System.out.print(r * i + " " );
int res = n - (r * (k * (k - 1 ) / 2 ));
System.out.println(res);
}
}
public static void main(String[] args)
{
int n = 24 ;
int k = 4 ;
print_sequence(n, k);
n = 24 ; k = 5 ;
print_sequence(n, k);
n = 6 ; k = 4 ;
print_sequence(n, k);
}
}
|
Python3
def print_sequence(n, k):
b = int (n / (k * (k + 1 ) / 2 ));
if b = = 0 :
print ( "-1" )
else :
r = 1 ;
x = 1
while x * * 2 < = n:
if n % x ! = 0 :
continue ;
elif x < = b and x > r:
r = x
elif n / x < = b and n / x > r :
r = n / x
x = x + 1
i = 1
while i < k :
print (r * i, end = " " )
i = i + 1
last_term = n - (r * (k * (k - 1 ) / 2 ))
print (last_term)
print_sequence( 24 , 4 )
print_sequence( 24 , 5 )
print_sequence( 6 , 4 )
|
C#
using System;
class GFG {
static void print_sequence( int n, int k)
{
int b = n / (k * (k + 1) / 2);
if (b == 0)
{
Console.Write( "-1" );
}
else
{
int r = 1;
for ( int x = 1; x * x <= n; x++)
{
if (n % x != 0)
continue ;
if (x <= b && x > r)
r = x;
if (n / x <= b && n / x > r)
r = n / x;
}
for ( int i = 1; i < k; i++)
Console.Write(r * i + " " );
int res = n - (r * (k *
(k - 1) / 2));
Console.WriteLine(res);
}
}
public static void Main()
{
int n = 24;
int k = 4;
print_sequence(n, k);
n = 24; k = 5;
print_sequence(n, k);
n = 6; k = 4;
print_sequence(n, k);
}
}
|
PHP
<?php
function print_sequence( $n , $k )
{
$b = (int)( $n / ( $k * ( $k + 1) / 2));
if ( $b == 0)
{
echo (-1);
}
else
{
$r = 1;
for ( $x = 1; $x * $x <= $n ; $x ++)
{
if ( $n % $x != 0)
continue ;
if ( $x <= $b && $x > $r )
$r = $x ;
if ( $n / $x <= $b && $n / $x > $r )
$r = $n / $x ;
}
for ( $i = 1; $i < $k ; $i ++)
echo ( $r * $i . " " );
$res = $n - ( $r * ( $k * ( $k - 1) / 2));
echo ( $res . "\n" );
}
}
$n = 24;
$k = 4;
print_sequence( $n , $k );
$n = 24; $k = 5;
print_sequence( $n , $k );
$n = 6; $k = 4;
print_sequence( $n , $k );
?>
|
Javascript
<script>
function print_sequence(n, k)
{
let b = parseInt(n / (k * (k + 1) / 2));
if (b == 0)
{
document.write(-1);
}
else
{
let r = 1;
for (let x = 1; x * x <= n; x++)
{
if (n % x != 0)
continue ;
if (x <= b && x > r)
r = x;
if (n / x <= b && n / x > r)
r = n / x;
}
for (let i = 1; i < k; i++)
document.write(r * i + " " );
let res = n - (r * (k * (k - 1) / 2));
document.write(res + "<br>" );
}
}
let n = 24;
let k = 4;
print_sequence(n, k);
n = 24;
k = 5;
print_sequence(n, k);
n = 6;
k = 4;
print_sequence(n, k);
</script>
|
Output :
2 4 6 12
1 2 3 4 14
-1
Time complexity: O( sqrt (n) )
Auxiliary Space: O(1)
If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
18 Sep, 2023
Like Article
Save Article