Given a set of n elements, find number of ways of partitioning it.
Examples:
Input: n = 2
Output: Number of ways = 2
Explanation: Let the set be {1, 2}
{ {1}, {2} }
{ {1, 2} }
Input: n = 3
Output: Number of ways = 5
Explanation: Let the set be {1, 2, 3}
{ {1}, {2}, {3} }
{ {1}, {2, 3} }
{ {2}, {1, 3} }
{ {3}, {1, 2} }
{ {1, 2, 3} }.
Recommended practice
The solution to above questions is Bell Number.
What is a Bell Number?
Let S(n, k) be total number of partitions of n elements into k sets. The value of n’th Bell Number is sum of S(n, k) for k = 1 to n.

Value of S(n, k) can be defined recursively as, S(n+1, k) = k*S(n, k) + S(n, k-1)
How does above recursive formula work?
When we add a (n+1)’th element to k partitions, there are two possibilities.
1) It is added as a single element set to existing partitions, i.e, S(n, k-1)
2) It is added to all sets of every partition, i.e., k*S(n, k)
S(n, k) is called Stirling numbers of the second kind
First few Bell numbers are 1, 1, 2, 5, 15, 52, 203, ….
A Simple Method to compute n’th Bell Number is to one by one compute S(n, k) for k = 1 to n and return sum of all computed values. Refer this for computation of S(n, k).
Below is Dynamic Programming based implementation of the above recursive code using the Stirling number-
C++
#include <iostream>
using namespace std;
int main() {
int n=5;
int s[n+1][n+1];
for ( int i=0;i<n+1;i++){
for ( int j=0;j<n+1;j++){
if (j>i) s[i][j]=0;
else if (i==j) s[i][j]=1;
else if (i==0 || j==0) s[i][j]=0;
else {
s[i][j]= j*s[i-1][j] + s[i-1][j-1];
}
}
}
int ans=0;
for ( int i=0;i<n+1;i++){
ans += s[n][i];
}
cout<<ans;
return 0;
}
|
Java
import java.io.*;
public class GFG {
public static void main(String[] args)
{
int n = 5 ;
int [][] s = new int [n + 1 ][n + 1 ];
for ( int i = 0 ; i < n + 1 ; i++) {
for ( int j = 0 ; j < n + 1 ; j++) {
if (j > i)
s[i][j] = 0 ;
else if (i == j)
s[i][j] = 1 ;
else if (i == 0 || j == 0 )
s[i][j] = 0 ;
else {
s[i][j]
= j * s[i - 1 ][j] + s[i - 1 ][j - 1 ];
}
}
}
int ans = 0 ;
for ( int i = 0 ; i < n + 1 ; i++) {
ans += s[n][i];
}
System.out.println(ans);
}
}
|
Python3
n = 5
s = [[ 0 for _ in range (n + 1 )] for _ in range (n + 1 )]
for i in range (n + 1 ):
for j in range (n + 1 ):
if j > i:
continue
elif (i = = j):
s[i][j] = 1
elif (i = = 0 or j = = 0 ):
s[i][j] = 0
else :
s[i][j] = j * s[i - 1 ][j] + s[i - 1 ][j - 1 ]
ans = 0
for i in range ( 0 ,n + 1 ):
ans + = s[n][i]
print (ans)
|
C#
using System;
public class Program {
static public void Main( string [] args) {
int n = 5;
int [, ] s = new int [n + 1, n + 1];
for ( int i = 0; i < n + 1; i++) {
for ( int j = 0; j < n + 1; j++) {
if (j > i)
s[i, j] = 0;
else if (i == j)
s[i, j] = 1;
else if (i == 0 || j == 0)
s[i, j] = 0;
else
s[i, j]
= j * s[i - 1, j] + s[i - 1, j - 1];
}
}
int ans = 0;
for ( int i = 0; i < n + 1; i++)
ans += s[n, i];
Console.WriteLine(ans);
}
}
|
Javascript
let n=5;
let s = new Array(n+1);
for (let i=0;i<n+1;i++){
s[i] = new Array(n+1);
for (let j=0;j<n+1;j++){
if (j>i) s[i][j]=0;
else if (i==j) s[i][j]=1;
else if (i==0 || j==0) s[i][j]=0;
else {
s[i][j]= j*s[i-1][j] + s[i-1][j-1];
}
}
}
let ans=0;
for (let i=0;i<n+1;i++){
ans += s[n][i];
}
console.log(ans)
|
Time complexity: O(N2)
Auxiliary Space: O(N2)
A Better Method is to use Bell Triangle. Below is a sample Bell Triangle for first few Bell Numbers.
1
1 2
2 3 5
5 7 10 15
15 20 27 37 52
The triangle is constructed using below formula.
// If this is first column of current row 'i'
If j == 0
// Then copy last entry of previous row
// Note that i'th row has i entries
Bell(i, j) = Bell(i-1, i-1)
// If this is not first column of current row
Else
// Then this element is sum of previous element
// in current row and the element just above the
// previous element
Bell(i, j) = Bell(i-1, j-1) + Bell(i, j-1)
Interpretation:
Then Bell(n, k) counts the number of partitions of the set {1, 2, …, n + 1} in which the element k + 1 is the largest element that can be alone in its set.
For example, Bell(3, 2) is 3, it is count of number of partitions of {1, 2, 3, 4} in which 3 is the largest singleton element. There are three such partitions:
{1}, {2, 4}, {3}
{1, 4}, {2}, {3}
{1, 2, 4}, {3}.
Below is Dynamic Programming based implementation of above recursive formula.
C++14
#include<iostream>
using namespace std;
int bellNumber( int n)
{
int bell[n+1][n+1];
bell[0][0] = 1;
for ( int i=1; i<=n; i++)
{
bell[i][0] = bell[i-1][i-1];
for ( int j=1; j<=i; j++)
bell[i][j] = bell[i-1][j-1] + bell[i][j-1];
}
return bell[n][0];
}
int main()
{
for ( int n=0; n<=5; n++)
cout << "Bell Number " << n << " is "
<< bellNumber(n) << endl;
return 0;
}
|
Java
import java.io.*;
class GFG
{
static int bellNumber( int n)
{
int [][] bell = new int [n+ 1 ][n+ 1 ];
bell[ 0 ][ 0 ] = 1 ;
for ( int i= 1 ; i<=n; i++)
{
bell[i][ 0 ] = bell[i- 1 ][i- 1 ];
for ( int j= 1 ; j<=i; j++)
bell[i][j] = bell[i- 1 ][j- 1 ] + bell[i][j- 1 ];
}
return bell[n][ 0 ];
}
public static void main (String[] args)
{
for ( int n= 0 ; n<= 5 ; n++)
System.out.println( "Bell Number " + n +
" is " +bellNumber(n));
}
}
|
Python3
def bellNumber(n):
bell = [[ 0 for i in range (n + 1 )] for j in range (n + 1 )]
bell[ 0 ][ 0 ] = 1
for i in range ( 1 , n + 1 ):
bell[i][ 0 ] = bell[i - 1 ][i - 1 ]
for j in range ( 1 , i + 1 ):
bell[i][j] = bell[i - 1 ][j - 1 ] + bell[i][j - 1 ]
return bell[n][ 0 ]
for n in range ( 6 ):
print ( 'Bell Number' , n, 'is' , bellNumber(n))
|
C#
using System;
class GFG {
static int bellNumber( int n)
{
int [,] bell = new int [n + 1,
n + 1];
bell[0, 0] = 1;
for ( int i = 1; i <= n; i++)
{
bell[i, 0] = bell[i - 1, i - 1];
for ( int j = 1; j <= i; j++)
bell[i, j] = bell[i - 1, j - 1] +
bell[i, j - 1];
}
return bell[n, 0];
}
public static void Main ()
{
for ( int n = 0; n <= 5; n++)
Console.WriteLine( "Bell Number " + n +
" is " +bellNumber(n));
}
}
|
Javascript
<script>
function bellNumber(n)
{
let bell = new Array(n+1);
for (let i = 0; i < n + 1; i++)
{
bell[i] = new Array(n + 1);
}
bell[0][0] = 1;
for (let i=1; i<=n; i++)
{
bell[i][0] = bell[i-1][i-1];
for (let j=1; j<=i; j++)
bell[i][j] = bell[i-1][j-1] + bell[i][j-1];
}
return bell[n][0];
}
for (let n=0; n<=5; n++)
document.write( "Bell Number " + n + " is " +bellNumber(n) + "</br>" );
</script>
|
PHP
<?php
function bellNumber( $n )
{
$bell [0][0] = 1;
for ( $i = 1; $i <= $n ; $i ++)
{
$bell [ $i ][0] = $bell [ $i - 1]
[ $i - 1];
for ( $j = 1; $j <= $i ; $j ++)
$bell [ $i ][ $j ] = $bell [ $i - 1][ $j - 1] +
$bell [ $i ][ $j - 1];
}
return $bell [ $n ][0];
}
for ( $n = 0; $n <= 5; $n ++)
echo ( "Bell Number " . $n . " is "
. bellNumber( $n ) . "\n" );
?>
|
Output
Bell Number 0 is 1
Bell Number 1 is 1
Bell Number 2 is 2
Bell Number 3 is 5
Bell Number 4 is 15
Bell Number 5 is 52
Time Complexity: O(N2)
Auxiliary Space: O(N2)
Space Optimized DP Approach:
We can use a 1-D list to represent the previous row of the Bell triangle. We initialize dp[0] to 1, since there is only one way to partition an empty set.
To compute the Bell numbers for n > 0, we first set dp[0] = dp[i-1], since the first element in each row is the same as the last element in the previous row. Then, we use the recurrence relation dp[j] = prev + dp[j-1] to compute the Bell number for each partition, where prev is the value of dp[j] in the previous iteration of the inner loop. We update prev to the temporary variable temp before updating dp[j].
Finally, we return dp[0], which is the Bell number for the partition of a set with n elements into non-empty subsets.
C++
#include <iostream>
#include <vector>
int bellNumbers( int n)
{
std::vector< int > dp(n + 1, 0);
dp[0] = 1;
for ( int i = 1; i <= n; i++) {
int prev = dp[0];
dp[0] = dp[i - 1];
for ( int j = 1; j <= i; j++) {
int temp = dp[j];
dp[j] = prev + dp[j - 1];
prev = temp;
}
}
return dp[0];
}
int main()
{
int n = 5;
std::cout << bellNumbers(n) << std::endl;
return 0;
}
|
Java
import java.util.Arrays;
public class BellNumbers {
static int bellNumbers( int n)
{
int [] dp = new int [n + 1 ];
Arrays.fill(dp, 0 );
dp[ 0 ] = 1 ;
for ( int i = 1 ; i <= n; i++) {
int prev = dp[ 0 ];
dp[ 0 ] = dp[i - 1 ];
for ( int j = 1 ; j <= i; j++) {
int temp = dp[j];
dp[j] = prev + dp[j - 1 ];
prev = temp;
}
}
return dp[ 0 ];
}
public static void main(String[] args)
{
int n = 5 ;
System.out.println(bellNumbers(n));
}
}
|
Python3
def bell_numbers(n):
dp = [ 1 ] + [ 0 ] * n
for i in range ( 1 , n + 1 ):
prev = dp[ 0 ]
dp[ 0 ] = dp[i - 1 ]
for j in range ( 1 , i + 1 ):
temp = dp[j]
dp[j] = prev + dp[j - 1 ]
prev = temp
return dp[ 0 ]
n = 5
print (bell_numbers(n))
|
C#
using System;
class Program {
static int BellNumbers( int n)
{
int [] dp = new int [n + 1];
dp[0] = 1;
for ( int i = 1; i <= n; i++) {
int prev = dp[0];
dp[0] = dp[i - 1];
for ( int j = 1; j <= i; j++) {
int temp = dp[j];
dp[j] = prev + dp[j - 1];
prev = temp;
}
}
return dp[0];
}
static void Main()
{
int n = 5;
Console.WriteLine(BellNumbers(n));
}
}
|
Time Complexity: 
Auxiliary Space: 
We will soon be discussing other more efficient methods of computing Bell Numbers.
Another problem that can be solved by Bell Numbers.
A number is squarefree if it is not divisible by a perfect square other than 1. For example, 6 is a square free number but 12 is not as it is divisible by 4.
Given a squarefree number x, find the number of different multiplicative partitions of x. The number of multiplicative partitions is Bell(n) where n is number of prime factors of x. For example x = 30, there are 3 prime factors of 2, 3 and 5. So the answer is Bell(3) which is 5. The 5 partitions are 1 x 30, 2 x15, 3 x 10, 5 x 6 and 2 x 3 x 5.
Exercise:
The above implementation causes arithmetic overflow for slightly larger values of n. Extend the above program so that results are computed under modulo 1000000007 to avoid overflows.
Reference:
https://en.wikipedia.org/wiki/Bell_number
https://en.wikipedia.org/wiki/Bell_triangle
This article is contributed by Rajeev Agrawal. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!