Given a number ‘n’ and a prime number ‘p’. We need to find out the power of ‘p’ in the prime factorization of n!
Examples:
Input : n = 4, p = 2
Output : 3
Power of 2 in the prime factorization
of 2 in 4! = 24 is 3
Input : n = 24, p = 2
Output : 22
Naive approach
The naive approach is to find the power of p in each number from 1 to n and add them. Because we know that during multiplication power is added.
C++
#include <bits/stdc++.h>
using namespace std;
int PowerOFPINnfactorial( int n, int p)
{
int ans = 0;
int temp = p;
while (temp <= n) {
ans += n / temp;
temp = temp * p;
}
return ans;
}
int main()
{
cout << PowerOFPINnfactorial(4, 2) << endl;
return 0;
}
|
Java
public class GFG
{
static int PowerOFPINnfactorial( int n, int p)
{
int ans = 0 ;
for ( int i = 1 ; i <= n; i++) {
int count = 0 , temp = i;
while (temp % p == 0 ) {
count++;
temp = temp / p;
}
ans += count;
}
return ans;
}
public static void main(String[] args)
{
System.out.println(PowerOFPINnfactorial( 4 , 2 ));
}
}
|
Python3
def PowerOFPINnfactorial(n, p):
ans = 0 ;
temp = p;
while (temp < = n):
ans + = n / temp;
temp = temp * p;
return ans;
print (PowerOFPINnfactorial( 4 , 2 ));
|
C#
using System;
public class GFG
{
static int PowerOFPINnfactorial( int n, int p)
{
int ans = 0;
for ( int i = 1; i <= n; i++) {
int count = 0, temp = i;
while (temp % p == 0) {
count++;
temp = temp / p;
}
ans += count;
}
return ans;
}
public static void Main(String []args)
{
Console.WriteLine(PowerOFPINnfactorial(4, 2));
}
}
|
PHP
<?php
function PowerOFPINnfactorial( $n , $p )
{
$ans = 0;
$temp = $p ;
while ( $temp <= $n )
{
$ans += $n / $temp ;
$temp = $temp * $p ;
}
return $ans ;
}
echo PowerOFPINnfactorial(4, 2) . "\n" ;
?>
|
Javascript
<script>
function PowerOFPINnfactorial(n, p)
{
let ans = 0;
let temp = p;
while (temp <= n)
{
ans += n / temp;
temp = temp * p;
}
return ans;
}
document.write(PowerOFPINnfactorial(4, 2));
</script>
|
Kotlin
fun PowerOFPINnfactorial(n: Int, p: Int)
{
var ans = 0 ;
var temp = p;
while (temp<=n)
{
ans+=n/temp;
temp*=p;
}
println(ans)
}
fun main(args: Array<String>)
{
val n = 4
val p = 2
PowerOFPINnfactorial(n,p)
}
|
Output:
3
Time Complexity: O(logpn)
Auxiliary Space: O(1)
Efficient Approach
Before discussing efficient approach lets discuss a question given a two numbers n, m how many numbers are there from 1 to n that are divisible by m the answer is floor(n/m).
Now coming back to our original question to find the power of p in n! what we do is count the number of numbers from 1 to n that are divisible by p then by
then by
till
> n and add them. This will be our required answer.
Powerofp(n!) = floor(n/p) + floor(n/p^2) + floor(n/p^3)........
Below is the implementation of the above steps.
C++
#include <bits/stdc++.h>
using namespace std;
int PowerOFPINnfactorial( int n, int p)
{
int ans = 0;
int temp = p;
while (temp <= n) {
ans += n / temp;
temp = temp * p;
}
return ans;
}
int main()
{
cout << PowerOFPINnfactorial(4, 2) << endl;
return 0;
}
|
Java
public class GFG
{
static int PowerOFPINnfactorial( int n, int p)
{
int ans = 0 ;
int temp = p;
while (temp <= n) {
ans += n / temp;
temp = temp * p;
}
return ans;
}
public static void main(String[] args)
{
System.out.println(PowerOFPINnfactorial( 4 , 2 ));
}
}
|
Python3
def PowerOFPINnfactorial(n, p):
ans = 0
temp = p
while (temp < = n) :
ans + = n / temp
temp = temp * p
return int (ans)
print (PowerOFPINnfactorial( 4 , 2 ))
|
C#
using System;
public class GFG
{
static int PowerOFPINnfactorial( int n, int p)
{
int ans = 0;
int temp = p;
while (temp <= n) {
ans += n / temp;
temp = temp * p;
}
return ans;
}
public static void Main(String []args)
{
Console.WriteLine(PowerOFPINnfactorial(4, 2));
}
}
|
PHP
<?php
function PowerOFPINnfactorial( $n , $p )
{
$ans = 0;
$temp = $p ;
while ( $temp <= $n )
{
$ans += $n / $temp ;
$temp = $temp * $p ;
}
return $ans ;
}
echo PowerOFPINnfactorial(4, 2) . "\n" ;
?>
|
Javascript
<script>
function PowerOFPINnfactorial(n, p)
{
let ans = 0;
let temp = p;
while (temp <= n)
{
ans += n / temp;
temp = temp * p;
}
return ans;
}
document.write(PowerOFPINnfactorial(4, 2));
</script>
|
Kotlin
fun PowerOFPINnfactorial(n: Int, p: Int)
{
var ans = 0 ;
var temp = p;
while (temp<=n)
{
ans+=n/temp;
temp*=p;
}
println(ans)
}
fun main(args: Array<String>)
{
val n = 4
val p = 2
PowerOFPINnfactorial(n,p)
}
|
Output:
3
Time Complexity :O(
(n))
Auxiliary Space: O(1)
If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
23 Jun, 2022
Like Article
Save Article