Iterated Logarithm log*(n)

Iterated Logarithm or Log*(n) is the number of times the logarithm function must be iteratively applied before the result is less than or equal to 1.

   \log ^{*}n:={\begin{cases}0}n\leq 1;\\1+\log ^{*}(\log n)}n>1\end{cases}}}

Applications: It is used in analysis of algorithms (Refer Wiki for details)

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// Recursive CPP program to find value of
// Iterated Logarithm
#include <bits/stdc++.h>
using namespace std;
  
int _log(double x, double base)
{
    return (int)(log(x) / log(base));
}
  
double recursiveLogStar(double n, double b)
{
    if (n > 1.0)
        return 1.0 + recursiveLogStar(_log(n, b), b);
    else
        return 0;
}
  
// Driver code
int main()
{
    int n = 100, base = 5;
    cout << "Log*(" << n << ") = " 
         << recursiveLogStar(n, base) << "\n";
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Recursive Java program to 
// find value of Iterated Logarithm
import java.io.*;
  
class GFG
{
static int _log(double x, 
                double base)
{
    return (int)(Math.log(x) / 
                 Math.log(base));
}
  
static double recursiveLogStar(double n, 
                               double b)
{
    if (n > 1.0)
        return 1.0
               recursiveLogStar(_log(n, 
                                 b), b);
    else
        return 0;
}
  
// Driver code
public static void main (String[] args) 
{
    int n = 100, base = 5;
    System.out.println("Log*(" + n + ") = " +
                  recursiveLogStar(n, base));
}
}
  
// This code is contributed by jit_t

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Recursive Python3 program to find value of
# Iterated Logarithm
import math
  
def _log(x, base):
  
    return (int)(math.log(x) / math.log(base))
  
def recursiveLogStar(n, b):
  
    if(n > 1.0):
        return 1.0 + recursiveLogStar(_log(n, b), b)
    else:
        return 0
  
  
# Driver code
if __name__=='__main__':
    n = 100
    base = 5
    print("Log*(", n, ") = ", recursiveLogStar(n, base))
  
# This code is contributed by
# Sanjit_Prasad

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// Recursive C# program to 
// find value of Iterated Logarithm
  
using System;
  
public class GFG{
static int _log(double x, double baset)
{
    return (int)(Math.Log(x) / 
                Math.Log(baset));
}
  
static double recursiveLogStar(double n, 
                            double b)
{
    if (n > 1.0)
        return 1.0 + 
            recursiveLogStar(_log(n, 
                                b), b);
    else
        return 0;
}
  
// Driver code
    static public void Main (){
      
    int n = 100, baset = 5;
    Console.WriteLine("Log*(" + n + ") = " +
                recursiveLogStar(n, baset));
}
}
  
// This code is contributed by ajit.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// Recursive PhP program to find 
// value of Iterated Logarithm
  
function _log($x, $base)
{
    return (int)(log($x) / log($base));
}
  
function recursiveLogStar($n, $b)
{
    if ($n > 1.0)
        return 1.0 + 
               recursiveLogStar(_log($n
                               $b), $b);
    else
        return 0;
}
  
// Driver code
$n = 100; $base = 5;
echo "Log*(" , $n , ")"," = ",
recursiveLogStar($n, $base), "\n";
  
// This code is contributed by ajit
?>

chevron_right



Output :

Log*(100) = 2

Iterative Implementation :

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// Iterative CPP function to find value of
// Iterated Logarithm
int iterativeLogStar(double n, double b)
{
    int count = 0;
    while (n >= 1) {
        n = _log(n, b);
        count++;
    }
    return count;
}

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Iterative Python function to find value of
# Iterated Logarithm
  
  
def iterativeLogStar(n, b):
  
    count = 0
    while(n >= 1):
        n = _log(n, b)
        count = count + 1
  
    return count
  
# This code is contributed by
# Sanjit_Prasad

chevron_right


This article is contributed by Abhishek rajput. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up

Improved By : jit_t, Sanjit_Prasad



Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.