# Longest Monotonically Increasing Subsequence Size (N log N): Simple implementation

Given an array of random numbers, find longest monotonically increasing subsequence (LIS) in the array.

If you want to understand the O(NlogN) approach, it’s explained very clearly here.

In this post, a simple and time saving implementation of O(NlogN) approach using stl is discussed. Below is the code for LIS O(NlogN) :

`// A simple C++ implementation to find LIS ` `#include<iostream> ` `#include<algorithm> ` `#include<set> ` `using` `namespace` `std; ` ` ` `// Return length of LIS in arr[] of size N ` `int` `lis(` `int` `arr[], ` `int` `N) ` `{ ` ` ` `int` `i; ` ` ` `set<` `int` `> s; ` ` ` `set<` `int` `>::iterator k; ` ` ` `for` `(i=0; i<N; i++) ` ` ` `{ ` ` ` `// Check if the element was actually inserted ` ` ` `// An element in set is not inserted if it is ` ` ` `// already present. Please see ` ` ` `if` `(s.insert(arr[i]).second) ` ` ` `{ ` ` ` `// Find the position of inserted element in iterator k ` ` ` `k = s.find(arr[i]); ` ` ` ` ` `k++; ` `// Find the next greater element in set ` ` ` ` ` `// If the new element is not inserted at the end, then ` ` ` `// remove the greater element next to it (This is tricky) ` ` ` `if` `(k!=s.end()) s.erase(k); ` ` ` `} ` ` ` `} ` ` ` ` ` `// Note that set s may not contain actual LIS, but its size gives ` ` ` `// us the length of LIS ` ` ` `return` `s.size(); ` `} ` ` ` `int` `main() ` `{ ` ` ` `int` `arr[] = {8, 9, 12, 10, 11}; ` ` ` `int` `n = ` `sizeof` `(arr)/` `sizeof` `(arr[0]); ` ` ` `cout << lis(arr, n)<< endl; ` `} ` |

*chevron_right*

*filter_none*

Output:

4

This article is contributed by **Raj Kumar**. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above

## Recommended Posts:

- Longest Increasing Subsequence Size (N log N)
- Longest Increasing Odd Even Subsequence
- Longest Increasing Subsequence | DP-3
- Longest Increasing consecutive subsequence
- Construction of Longest Increasing Subsequence (N log N)
- C++ Program for Longest Increasing Subsequence
- C/C++ Program for Longest Increasing Subsequence
- Longest Common Increasing Subsequence (LCS + LIS)
- Maximum product of an increasing subsequence of size 3
- Java Program for Longest Increasing Subsequence
- Python program for Longest Increasing Subsequence
- Printing longest Increasing consecutive subsequence
- Construction of Longest Increasing Subsequence(LIS) and printing LIS sequence
- Find the Longest Increasing Subsequence in Circular manner
- Maximum Sum Increasing Subsequence | DP-14