# Find minimum number of Log value needed to calculate Log upto N

Given an integer N. The task is to find the minimum number of log values needed to calculate all the log values from 1 to N using properties of the logarithm.

Examples:

Input : N = 6
Output : 3
Value of log1 is already know, i.e. 0.
Except this the three log values needed are,
log2, log3, log5.

Input : N = 4
Output : 2


## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

One of the properties of log function is:

log(x.y) = log(x) + log(y)


Hence, to calculate log(x.y), we must know log values of x and y. Let us understand the concept using an example, for N = 6. Let ans denotes the number of log values needed to find all log values from 1 to 6.

• log(1)=0 (implicit).
• To calculate log(2), we must know its value prior, we can’t find this using property.so, ans become 1.
• To calculate log(3), we must know its value prior, we can’t find this using property.so, ans become 2.
• To calculate log(4), we can use property, log(4)=log(2.2)=log(2)+log(2).As we already find log(2) hence ans remains 2.
• To calculate log(5), we must know its value prior, we can’t find this using property.so, ans become 3.
• To calculate log(6), we can use property, log(6)=log(2.3)=log(2)+log(3).As we already find log(2) and log(3), hence ans remains 3.

The idea is very simple, on observing carefully you will find that you can’t calculate log values of prime number as it has no divisor(other than 1 and itself). So, the task reduces to find all prime numbers from 1 to N.

Below is the implementation of the above approach:

## C++

 // C++ program to find number of log values  // needed to calculate all the log values  // from 1 to N     #include  using namespace std;     #define MAX 1000005     // In this vector prime[i] will store true  // if prime[i] is prime, else store false  vector<bool> prime(MAX, true);     // Using sieve of Eratosthenes to find   // all prime upto N  void seive(int N)  {      prime = prime = false;             for (int i = 2; i <= N; i++) {          if (prime[i]) {              for (int j = 2; i * j <= N; j++)                  prime[i * j] = false;          }      }  }     // Function to find number of log values needed   // to calculate all the log values from 1 to N  int countLogNeeded(int N)  {      int count = 0;             // calculate primes upto N      seive(N);             for (int i = 1; i <= N; i++) {          if (prime[i])              count++;      }             return count;  }     // Driver code  int main()  {      int N = 6;             cout<

## Java

 // Java program to find number of log values  // needed to calculate all the log values  // from 1 to N  import java.util.*;     class GFG   {         static int MAX = 1000005;         // In this vector prime[i] will store true      // if prime[i] is prime, else store false      static Vector prime = new Vector<>(MAX);         static void vecIni()       {          for (int i = 0; i < MAX; i++)           {              prime.add(i, true);          }      }         // Using sieve of Eratosthenes to find       // all prime upto N      static void seive(int N)       {          prime.add(0, false);          prime.add(1, false);             for (int i = 2; i <= N; i++)           {              if (prime.get(i))              {                  for (int j = 2; i * j <= N; j++)                  {                      prime.add(i * j, false);                  }              }          }      }         // Function to find number of log values needed       // to calculate all the log values from 1 to N      static int countLogNeeded(int N)      {          int count = 0;             // calculate primes upto N          seive(N);             for (int i = 1; i <= N; i++)           {              if (prime.get(i))               {                  count++;              }          }             return count;      }         // Driver code      public static void main(String[] args)       {          vecIni();          int N = 6;          System.out.println(countLogNeeded(N));      }  }     /* This code contributed by PrinciRaj1992 */

## Python3

 # Python3 program to find number of log values  # needed to calculate all the log values  # from 1 to N     MAX = 1000005    # In this list prime[i] will store true  # if prime[i] is prime, else store false  prime = [True for i in range(MAX)]     # Using sieve of Eratosthenes to find  # all prime upto N  def seive(N):         prime, prime = False, False        for i in range(2, N + 1):          if(prime[i]):              for j in range(2, N + 1):                  if(i * j > N):                      break                 prime[i * j] = False       # Function to find number of log values needed  # to calculate all the log values from 1 to N  def countLogNeeded(N):         count = 0        # calculate primes upto N      seive(N)         for i in range(1, N + 1):          if(prime[i]):              count = count + 1        return count     # Driver code  if __name__=='__main__':      N = 6     print(countLogNeeded(N))     # This code is contributed by  # Sanjit_Prasad 

## C#

 // C# program to find number of log values   // needed to calculate all the log values   // from 1 to N   using System;  using System.Collections.Generic;  using System.Linq;     class GFG   {          static int MAX = 1000005;          // In this vector prime[i] will store true       // if prime[i] is prime, else store false       static List prime = new List(MAX);          static void vecIni()       {           for (int i = 0; i < MAX; i++)           {               prime.Add(true);           }       }          // Using sieve of Eratosthenes to find       // all prime upto N       static void seive(int N)       {           prime.Insert(0, false);           prime.Insert(1, false);              for (int i = 2; i <= N; i++)           {               if (prime[i])              {                   for (int j = 2; i * j <= N; j++)                   {                       prime.Insert(i * j, false);                   }               }           }       }          // Function to find number of log values needed       // to calculate all the log values from 1 to N       static int countLogNeeded(int N)       {           int count = 0;              // calculate primes upto N           seive(N);              for (int i = 1; i <= N; i++)           {               if (prime[i])               {                   count++;               }           }              return count;       }          // Driver code       public static void Main()       {           vecIni();           int N = 6;           Console.Write(countLogNeeded(N));       }   }      /* This code contributed by Mohit kumar */

Output:

3
`

Time Complexity: My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.