Sum of average of all subsets

Given an array arr of N integer elements, the task is to find sum of average of all subsets of this array.

Example :

Input  : arr[] = [2, 3, 5]
Output : 23.33 
Explanation : Subsets with their average are, 
[2]        average = 2/1 = 2
[3]        average = 3/1 = 3
[5]        average = 5/1 = 5
[2, 3]        average = (2+3)/2 = 2.5
[2, 5]        average = (2+5)/2 = 3.5
[3, 5]        average = (3+5)/2 = 4
[2, 3, 5]    average = (2+3+5)/3 = 3.33

Sum of average of all subset is, 
2 + 3 + 5 + 2.5 + 3.5 + 4 + 3.33 = 23.33

A naive solution is to iterate through all possible subsets, get average of all of them and then add them one by one, but this will take exponential time and will be infeasible for bigger arrays.

We can get a pattern by taking an example,

arr = [a0, a1, a2, a3]
sum of average = 
a0/1 + a1/1 + a2/2 + a3/1 +
(a0+a1)/2 + (a0+a2)/2 + (a0+a3)/2 + (a1+a2)/2 +
 (a1+a3)/2 + (a2+a3)/2 + 
(a0+a1+a2)/3 + (a0+a2+a3)/3 + (a0+a1+a3)/3 + 
 (a1+a2+a3)/3 +
(a0+a1+a2+a3)/4

If S = (a0+a1+a2+a3), then above expression 
can be rearranged as below,
sum of average = (S)/1 + (3*S)/2 + (3*S)/3 + (S)/4

The coefficient with numerators can be explained as follows, suppose we are iterating over subsets with K elements then denominator will be K and numerator will be r*S, where ‘r’ denotes number of times a particular array element will be added while iterating over subsets of same size. By inspection we can see that r will be nCr(N – 1, n – 1) because after placing one element in summation, we need to choose (n – 1) elements from (N – 1) elements so each element will have a frequency of nCr(N – 1, n – 1) while considering subsets of same size, as all elements are taking part in summation equal number of times, this will the frequency of S also and will be the numerator in final expression.
In below code nCr is implemented using dynamic programming method, you can read more about that here,

C++



filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to get sum of average of all subsets
#include <bits/stdc++.h>
using namespace std;
  
// Returns value of Binomial Coefficient C(n, k)
int nCr(int n, int k)
{
    int C[n + 1][k + 1];
    int i, j;
  
    // Calculate value of Binomial Coefficient in bottom
    // up manner
    for (i = 0; i <= n; i++) {
        for (j = 0; j <= min(i, k); j++) {
            // Base Cases
            if (j == 0 || j == i)
                C[i][j] = 1;
  
            // Calculate value using previously stored
            // values
            else
                C[i][j] = C[i - 1][j - 1] + C[i - 1][j];
        }
    }
    return C[n][k];
}
  
// method returns sum of average of all subsets
double resultOfAllSubsets(int arr[], int N)
{
    double result = 0.0; // Initialize result
  
    // Find sum of elements
    int sum = 0;
    for (int i = 0; i < N; i++)
        sum += arr[i];
  
    // looping once for all subset of same size
    for (int n = 1; n <= N; n++)
  
        /* each element occurs nCr(N-1, n-1) times while
           considering subset of size n  */
        result += (double)(sum * (nCr(N - 1, n - 1))) / n;
  
    return result;
}
  
// Driver code to test above methods
int main()
{
    int arr[] = { 2, 3, 5, 7 };
    int N = sizeof(arr) / sizeof(int);
    cout << resultOfAllSubsets(arr, N) << endl;
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// java program to get sum of
// average of all subsets
import java.io.*;
  
class GFG {
  
    // Returns value of Binomial
    // Coefficient C(n, k)
    static int nCr(int n, int k)
    {
        int C[][] = new int[n + 1][k + 1];
        int i, j;
  
        // Calculate value of Binomial
        // Coefficient in bottom up manner
        for (i = 0; i <= n; i++) {
            for (j = 0; j <= Math.min(i, k); j++) {
                // Base Cases
                if (j == 0 || j == i)
                    C[i][j] = 1;
  
                // Calculate value using
                // previously stored values
                else
                    C[i][j] = C[i - 1][j - 1] + C[i - 1][j];
            }
        }
        return C[n][k];
    }
  
    // method returns sum of average of all subsets
    static double resultOfAllSubsets(int arr[], int N)
    {
        // Initialize result
        double result = 0.0;
  
        // Find sum of elements
        int sum = 0;
        for (int i = 0; i < N; i++)
            sum += arr[i];
  
        // looping once for all subset of same size
        for (int n = 1; n <= N; n++)
  
            /* each element occurs nCr(N-1, n-1) times while
            considering subset of size n */
            result += (double)(sum * (nCr(N - 1, n - 1))) / n;
  
        return result;
    }
  
    // Driver code to test above methods
    public static void main(String[] args)
    {
        int arr[] = { 2, 3, 5, 7 };
        int N = arr.length;
        System.out.println(resultOfAllSubsets(arr, N));
    }
}
  
// This code is contributed by vt_m

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to get sum
# of average of all subsets
  
# Returns value of Binomial
# Coefficient C(n, k)
def nCr(n, k):
  
    C = [[0 for i in range(k + 1)]
            for j in range(n + 1)]
  
    # Calculate value of Binomial 
    # Coefficient in bottom up manner
    for i in range(n + 1):
      
        for j in range(min(i, k) + 1):
          
            # Base Cases
            if (j == 0 or j == i):
                C[i][j] = 1
  
            # Calculate value using 
            # previously stored values
            else:
                C[i][j] = C[i-1][j-1] + C[i-1][j]
      
    return C[n][k]
  
# Method returns sum of
# average of all subsets
def resultOfAllSubsets(arr, N):
  
    result = 0.0 # Initialize result
  
    # Find sum of elements
    sum = 0
    for i in range(N):
        sum += arr[i]
  
    # looping once for all subset of same size
    for n in range(1, N + 1):
  
        # each element occurs nCr(N-1, n-1) times while
        # considering subset of size n */
        result += (sum * (nCr(N - 1, n - 1))) / n
  
    return result
  
# Driver code 
arr = [2, 3, 5, 7]
N = len(arr)
print(resultOfAllSubsets(arr, N))
  
  
# This code is contributed by Anant Agarwal.

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to get sum of
// average of all subsets
using System;
  
class GFG {
      
    // Returns value of Binomial
    // Coefficient C(n, k)
    static int nCr(int n, int k)
    {
        int[, ] C = new int[n + 1, k + 1];
        int i, j;
  
        // Calculate value of Binomial
        // Coefficient in bottom up manner
        for (i = 0; i <= n; i++) {
            for (j = 0; j <= Math.Min(i, k); j++) 
            {
                // Base Cases
                if (j == 0 || j == i)
                    C[i, j] = 1;
  
                // Calculate value using
                // previously stored values
                else
                    C[i, j] = C[i - 1, j - 1] + C[i - 1, j];
            }
        }
        return C[n, k];
    }
  
    // method returns sum of average 
    // of all subsets
    static double resultOfAllSubsets(int[] arr, int N)
    {
        // Initialize result
        double result = 0.0;
  
        // Find sum of elements
        int sum = 0;
        for (int i = 0; i < N; i++)
            sum += arr[i];
  
        // looping once for all subset 
        // of same size
        for (int n = 1; n <= N; n++)
  
            /* each element occurs nCr(N-1, n-1) times while
               considering subset of size n */
            result += (double)(sum * (nCr(N - 1, n - 1))) / n;
  
        return result;
    }
  
    // Driver code to test above methods
    public static void Main()
    {
        int[] arr = { 2, 3, 5, 7 };
        int N = arr.Length;
        Console.WriteLine(resultOfAllSubsets(arr, N));
    }
}
  
// This code is contributed by Sam007

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to get sum 
// of average of all subsets
  
// Returns value of Binomial
// Coefficient C(n, k)
function nCr($n, $k)
{
    $C[$n + 1][$k + 1] = 0;
    $i; $j;
  
    // Calculate value of Binomial
    // Coefficient in bottom up manner
    for ($i = 0; $i <= $n; $i++) 
    {
        for ($j = 0; $j <= min($i, $k); $j++)
        {
            // Base Cases
            if ($j == 0 || $j == $i)
                $C[$i][$j] = 1;
  
            // Calculate value using 
            // previously stored values
            else
                $C[$i][$j] = $C[$i - 1][$j - 1] + 
                             $C[$i - 1][$j];
        }
    }
    return $C[$n][$k];
}
  
// method returns sum of
// average of all subsets
function resultOfAllSubsets($arr, $N)
{
    // Initialize result
    $result = 0.0; 
  
    // Find sum of elements
    $sum = 0;
    for ($i = 0; $i < $N; $i++)
        $sum += $arr[$i];
  
    // looping once for all 
    // subset of same size
    for ($n = 1; $n <= $N; $n++)
  
        /* each element occurs nCr(N-1, 
        n-1) times while considering 
        subset of size n */
        $result += (($sum * (nCr($N - 1, 
                                 $n - 1))) / $n);
  
    return $result;
}
  
// Driver Code
$arr = array( 2, 3, 5, 7 );
$N = sizeof($arr) / sizeof($arr[0]);
echo resultOfAllSubsets($arr, $N) ;
  
// This code is contributed by nitin mittal. 
?>

chevron_right



Output :

63.75

This article is contributed by Utkarsh Trivedi. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up

Improved By : Sam007, nitin mittal