Sum of subsets of all the subsets of an array | O(N)
Given an array arr[] of length N, the task is to find the overall sum of subsets of all the subsets of the array.
Examples:
Input: arr[] = {1, 1}
Output: 6
All possible subsets:
a) {} : 0
All the possible subsets of this subset
will be {}, Sum = 0
b) {1} : 1
All the possible subsets of this subset
will be {} and {1}, Sum = 0 + 1 = 1
c) {1} : 1
All the possible subsets of this subset
will be {} and {1}, Sum = 0 + 1 = 1
d) {1, 1} : 4
All the possible subsets of this subset
will be {}, {1}, {1} and {1, 1}, Sum = 0 + 1 + 1 + 2 = 4
Thus, ans = 0 + 1 + 1 + 4 = 6
Input: arr[] = {1, 4, 2, 12}
Output: 513
Approach: In this article, an approach with O(N) time complexity to solve the given problem will be discussed.
The key is observing the number of times an element will repeat in all the subsets.
Let’s magnify the view. It is known that every element will appear 2(N – 1) times in the sum of subsets. Now, let’s magnify the view even further and see how the count varies with the subset size.
There are N – 1CK – 1 subsets of size K for every index that include it.
Contribution of an element for a subset of size K will be equal to 2(K – 1) times its value. Thus, total contribution of an element for all the subsets of length K will be equal to N – 1CK – 1 * 2(K – 1)
Total contribution among all the subsets will be equal to:
N – 1CN – 1 * 2(N – 1) + N – 1CN – 2 * 2(N – 2 + N – 1CN – 3 * 2(N – 3) + … + N – 1C0 * 20.
Now, the contribution of each element in the final answer is known. So, multiply it to the sum of all the elements of the array which will give the required answer.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; #define maxN 10 // To store factorial values int fact[maxN]; // Function to return ncr int ncr( int n, int r) { return (fact[n] / fact[r]) / fact[n - r]; } // Function to return the required sum int findSum( int * arr, int n) { // Initialising factorial fact[0] = 1; for ( int i = 1; i < n; i++) fact[i] = i * fact[i - 1]; // Multiplier int mul = 0; // Finding the value of multipler // according to the formula for ( int i = 0; i <= n - 1; i++) mul += ( int ) pow (2, i) * ncr(n - 1, i); // To store the final answer int ans = 0; // Calculate the final answer for ( int i = 0; i < n; i++) ans += mul * arr[i]; return ans; } // Driver code int main() { int arr[] = { 1, 1 }; int n = sizeof (arr) / sizeof ( int ); cout << findSum(arr, n); return 0; } |
Java
// Java implementation of the approach class GFG { static int maxN = 10 ; // To store factorial values static int []fact = new int [maxN]; // Function to return ncr static int ncr( int n, int r) { return (fact[n] / fact[r]) / fact[n - r]; } // Function to return the required sum static int findSum( int [] arr, int n) { // Initialising factorial fact[ 0 ] = 1 ; for ( int i = 1 ; i < n; i++) fact[i] = i * fact[i - 1 ]; // Multiplier int mul = 0 ; // Finding the value of multipler // according to the formula for ( int i = 0 ; i <= n - 1 ; i++) mul += ( int )Math.pow( 2 , i) * ncr(n - 1 , i); // To store the final answer int ans = 0 ; // Calculate the final answer for ( int i = 0 ; i < n; i++) ans += mul * arr[i]; return ans; } // Driver code public static void main(String []args) { int arr[] = { 1 , 1 }; int n = arr.length; System.out.println(findSum(arr, n)); } } // This code is contributed by Rajput-Ji |
Python3
# Python3 implementation of the approach maxN = 10 # To store factorial values fact = [ 0 ] * maxN; # Function to return ncr def ncr(n, r) : return (fact[n] / / fact[r]) / / fact[n - r]; # Function to return the required sum def findSum(arr, n) : # Initialising factorial fact[ 0 ] = 1 ; for i in range ( 1 , n) : fact[i] = i * fact[i - 1 ]; # Multiplier mul = 0 ; # Finding the value of multipler # according to the formula for i in range (n) : mul + = ( 2 * * i) * ncr(n - 1 , i); # To store the final answer ans = 0 ; # Calculate the final answer for i in range (n) : ans + = mul * arr[i]; return ans; # Driver code if __name__ = = "__main__" : arr = [ 1 , 1 ]; n = len (arr); print (findSum(arr, n)); # This code is contributed by AnkitRai01 |
C#
// C# implementation of the approach using System; class GFG { static int maxN = 10; // To store factorial values static int []fact = new int [maxN]; // Function to return ncr static int ncr( int n, int r) { return (fact[n] / fact[r]) / fact[n - r]; } // Function to return the required sum static int findSum( int [] arr, int n) { // Initialising factorial fact[0] = 1; for ( int i = 1; i < n; i++) fact[i] = i * fact[i - 1]; // Multiplier int mul = 0; // Finding the value of multipler // according to the formula for ( int i = 0; i <= n - 1; i++) mul += ( int )Math.Pow(2, i) * ncr(n - 1, i); // To store the final answer int ans = 0; // Calculate the final answer for ( int i = 0; i < n; i++) ans += mul * arr[i]; return ans; } // Driver code public static void Main(String []args) { int []arr = { 1, 1 }; int n = arr.Length; Console.WriteLine(findSum(arr, n)); } } // This code is contributed by 29AjayKumar |
Javascript
<script> // JavaScript implementation of the approach // To store factorial values let fact = new Array(10); // Function to return ncr function ncr(n, r) { return (fact[n] / fact[r]) / fact[n - r]; } // Function to return the required sum function findSum(arr, n) { // Initialising factorial fact[0] = 1; for (let i = 1; i < n; i++) fact[i] = i * fact[i - 1]; // Multiplier let mul = 0; // Finding the value of multipler // according to the formula for (let i = 0; i <= n - 1; i++) mul += Math.pow(2, i) * ncr(n - 1, i); // To store the final answer let ans = 0; // Calculate the final answer for (let i = 0; i < n; i++) ans += mul * arr[i]; return ans; } // Driver code let arr = [ 1, 1 ]; let n = arr.length; document.write(findSum(arr, n)); // This code is contributed by Mayank Tyagi </script> |
6
Time Complexity : O(Nlogn) ,where N is the number of elements in an array.
Space Complexity : O(N) ,to store the factorial of numbers from 1 to N
Please Login to comment...