Sum of subsets of all the subsets of an array | O(2^N)

Given an array arr[] of length N, the task is to find the overall sum of subsets of all the subsets of the array.

Examples:

Input: arr[] = {1, 1}
Output: 6
All possible subsets:
a) {} : 0
All the possible subsets of this subset
will be {}, Sum = 0
b) {1} : 1
All the possible subsets of this subset
will be {} and {1}, Sum = 0 + 1 = 1
c) {1} : 1
All the possible subsets of this subset
will be {} and {1}, Sum = 0 + 1 = 1
d) {1, 1} : 4
All the possible subsets of this subset
will be {}, {1}, {1} and {1, 1}, Sum = 0 + 1 + 1 + 2 = 4
Thus, ans = 0 + 1 + 1 + 4 = 6



Input: arr[] = {1, 4, 2, 12}
Output: 513

Approach: In this article, an approach with O(N * 2N) time complexity to solve the given problem will be discussed.
First, generate all the possible subsets of the array. There will be 2N subsets in total. Then for each subset, find the sum of all of its subset.

For, that it can be observed that in an array of length L, every element will come exactly 2(L – 1) times in the sum of subsets. So, the contribution of each element will be 2(L – 1) times its values.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to sum of all subsets of a
// given array
void subsetSum(vector<int>& c, int& ans)
{
    int L = c.size();
    int mul = (int)pow(2, L - 1);
    for (int i = 0; i < c.size(); i++)
        ans += c[i] * mul;
}
  
// Function to generate the subsets
void subsetGen(int* arr, int i, int n,
               int& ans, vector<int>& c)
{
    // Base-case
    if (i == n) {
  
        // Finding the sum of all the subsets
        // of the generated subset
        subsetSum(c, ans);
        return;
    }
  
    // Recursively accepting and rejecting
    // the current number
    subsetGen(arr, i + 1, n, ans, c);
    c.push_back(arr[i]);
    subsetGen(arr, i + 1, n, ans, c);
    c.pop_back();
}
  
// Driver code
int main()
{
    int arr[] = { 1, 1 };
    int n = sizeof(arr) / sizeof(int);
  
    // To store the final ans
    int ans = 0;
    vector<int> c;
  
    subsetGen(arr, 0, n, ans, c);
    cout << ans;
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
import java.util.*;
  
class GFG 
{
  
// To store the final ans
static int ans;
  
// Function to sum of all subsets of a
// given array
static void subsetSum(Vector<Integer> c)
{
    int L = c.size();
    int mul = (int)Math.pow(2, L - 1);
    for (int i = 0; i < c.size(); i++)
        ans += c.get(i) * mul;
}
  
// Function to generate the subsets
static void subsetGen(int []arr, int i, 
                      int n, Vector<Integer> c)
{
    // Base-case
    if (i == n) 
    {
  
        // Finding the sum of all the subsets
        // of the generated subset
        subsetSum(c);
        return;
    }
  
    // Recursively accepting and rejecting
    // the current number
    subsetGen(arr, i + 1, n, c);
    c.add(arr[i]);
    subsetGen(arr, i + 1, n, c);
    c.remove(0);
}
  
// Driver code
public static void main(String []args) 
{
    int arr[] = { 1, 1 };
    int n = arr.length;
  
    Vector<Integer> c = new Vector<Integer>();
  
    subsetGen(arr, 0, n, c);
    System.out.println(ans);
}
}
  
// This code is contributed by 29AjayKumar

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach
  
# store the answer
c = []
ans = 0
  
# Function to sum of all subsets of a
# given array
def subsetSum():
    global ans
    L = len(c)
    mul = pow(2, L - 1)
    i = 0
    while ( i < len(c)):
        ans += c[i] * mul
        i += 1
          
# Function to generate the subsets
def subsetGen(arr, i, n):
  
    # Base-case
    if (i == n) :
  
        # Finding the sum of all the subsets
        # of the generated subset
        subsetSum()
        return
      
    # Recursively accepting and rejecting
    # the current number
    subsetGen(arr, i + 1, n)
    c.append(arr[i])
    subsetGen(arr, i + 1, n)
    c.pop()
  
# Driver code 
if __name__ == "__main__"
  
    arr = [ 1, 1 ]
    n = len(arr)
  
    subsetGen(arr, 0, n)
    print (ans)
      
# This code is contributed by Arnab Kundu

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach
using System;
using System.Collections.Generic; 
  
class GFG 
{
  
// To store the final ans
static int ans;
  
// Function to sum of all subsets of a
// given array
static void subsetSum(List<int> c)
{
    int L = c.Count;
    int mul = (int)Math.Pow(2, L - 1);
    for (int i = 0; i < c.Count; i++)
        ans += c[i] * mul;
}
  
// Function to generate the subsets
static void subsetGen(int []arr, int i, 
                      int n, List<int> c)
{
    // Base-case
    if (i == n) 
    {
  
        // Finding the sum of all the subsets
        // of the generated subset
        subsetSum(c);
        return;
    }
  
    // Recursively accepting and rejecting
    // the current number
    subsetGen(arr, i + 1, n, c);
    c.Add(arr[i]);
    subsetGen(arr, i + 1, n, c);
    c.RemoveAt(0);
}
  
// Driver code
public static void Main(String []args) 
{
    int []arr = { 1, 1 };
    int n = arr.Length;
  
    List<int> c = new List<int>();
  
    subsetGen(arr, 0, n, c);
    Console.WriteLine(ans);
}
}
  
// This code is contributed by Rajput-Ji

chevron_right


Output:

6


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.