Implement *, – and / operations using only + arithmetic operator

Given two numbers, perform multiplication, subtraction and division operations on them, using ‘+’ arithmetic operator only.

Operations can be performed as follows:

Subtraction :-  a - b = a + (-1)*b.
Multiplication :- a * b = a + a + a ... b times.
Division :- a / b =  continuously subtract b from a and 
                  count how many times we can do that.

The above steps look simple, but it is slightly challenging as we can’t even use – to subtract.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP code to illustrate *, -, / using only
// '+' arithmatic operator
#include <bits/stdc++.h>
using namespace std;
  
// Function to flip the sign using only "+"
// operator (It is simple with '*' allowed.
// We need to do a = (-1)*a
int flipSign(int a)
{
    int neg = 0;
  
    // If sign is + ve turn it -ve
    // and vice-versa
    int tmp = a < 0 ? 1 : -1;
    while (a != 0)
    {
        neg += tmp;
        a += tmp;
    }
    return neg;
}
  
// Check if a and b are of different signs
bool areDifferentSign(int a, int b)
{
    return ((a<0 && b> 0) || (a > 0 && b < 0));
}
  
// Function to subtract two numbers
// by negating b and adding them
int sub(int a, int b)
{
    // Negating b
    return a + flipSign(b);
}
  
// Function to multiply a by b by
// adding a to itself b times
int mul(int a, int b)
{
    // because algo is faster if b<a
    if (a < b)
        return mul(b, a);
  
    // Adding a to itself b times
    int sum = 0;
    for (int i = abs(b); i > 0; i--)
        sum += a;
  
    // Check if final sign must be -ve or + ve
    if (b < 0)
        sum = flipSign(sum);
  
    return sum;
}
  
// Function to divide a by b by counting how many
// times 'b' can be subtracted from 'a' before
// getting 0
int division(int a, int b)
{
    // Raise exception if b is 0
    if (b == 0)
        throw(b);
  
    int quotient = 0, dividend;
  
    // Negating b to subtract from a
    int divisor = flipSign(abs(b));
  
    // Subtracting divisor from dividend
    for (dividend = abs(a); dividend >= abs(divisor);
                                dividend += divisor)
        quotient++;
  
    // Check if a and b are of similar symbols or not
    if (areDifferentSign(a, b))
        quotient = flipSign(quotient);
    return quotient;
}
  
// Driver code
int main()
{
    cout << "Subtraction is " << sub(4, -2) << endl;
    cout << "Product is " << mul(-9, 6) << endl;
  
    try
    {
        cout << "Division is " << division(8, 2);
    }
  
    catch (int k)
    {
        cout << " Exception :- Divide by 0";
    }
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java code to illustrate *, -, / using only 
// '+' arithmatic operator 
  
class GFG{
      
// Function to flip the sign using only "+" 
// operator (It is simple with '*' allowed. 
// We need to do a = (-1)*a 
static int flipSign(int a) 
    int neg = 0
  
    // If sign is + ve turn it -ve 
    // and vice-versa 
    int tmp = a < 0 ? 1 : -1
    while (a != 0
    
        neg += tmp; 
        a += tmp; 
    
    return neg; 
  
// Check if a and b are of different signs 
static boolean areDifferentSign(int a, int b) 
    return ((a < 0 && b > 0) || (a > 0 && b < 0)); 
  
// Function to subtract two numbers 
// by negating b and adding them 
static int sub(int a, int b) 
    // Negating b 
    return a + flipSign(b); 
  
// Function to multiply a by b by 
// adding a to itself b times 
static int mul(int a, int b) 
    // because algo is faster if b<a 
    if (a < b) 
        return mul(b, a); 
  
    // Adding a to itself b times 
    int sum = 0
    for (int i = Math.abs(b); i > 0; i--) 
        sum += a; 
  
    // Check if final sign must be -ve or + ve 
    if (b < 0
        sum = flipSign(sum); 
  
    return sum; 
  
// Function to divide a by b by counting  
// how many times 'b' can be subtracted  
// from 'a' before getting 0 
static int division(int a, int b) 
    // Raise exception if b is 0 
    if (b == 0
        throw new ArithmeticException(); 
  
    int quotient = 0, dividend; 
  
    // Negating b to subtract from a 
    int divisor = flipSign(Math.abs(b)); 
  
    // Subtracting divisor from dividend 
    for (dividend = Math.abs(a); dividend >= Math.abs(divisor); 
         dividend += divisor) 
        quotient++; 
  
    // Check if a and b are of similar symbols or not 
    if (areDifferentSign(a, b)) 
        quotient = flipSign(quotient); 
    return quotient; 
  
// Driver code 
public static void main(String[] args) 
    System.out.println("Subtraction is " + sub(4, -2)); 
    System.out.println("Product is " + mul(-9, 6)); 
  
    try
    
        System.out.println("Division is " + division(8, 2)); 
    
  
    catch (ArithmeticException e) 
    
        System.out.println("Exception :- Divide by 0"); 
    
}
  
// This code is contributed by mits

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 code to illustrate *, -, / using 
# only  '+' arithmatic operator 
  
# Function to flip the sign using only "+" 
# operator (It is simple with '*' allowed. 
# We need to do a = (-1)*a 
def flipSign(a): 
  
    neg = 0
  
    # If sign is + ve turn it -ve 
    # and vice-versa 
    tmp = 1 if a < 0 else -1
    while (a != 0): 
        neg += tmp; 
        a += tmp; 
  
    return neg; 
  
# Check if a and b are of different signs 
def areDifferentSign(a, b):
    return ((a < 0 and b > 0) or 
            (a > 0 and b < 0)); 
  
# Function to subtract two numbers 
# by negating b and adding them 
def sub(a, b): 
  
    # Negating b 
    return a + flipSign(b); 
  
# Function to multiply a by b by 
# adding a to itself b times 
def mul(a, b): 
  
    # because algo is faster if b<a 
    if (a < b): 
        return mul(b, a); 
  
    # Adding a to itself b times 
    sum = 0
    for i in range(abs(b), 0, -1): 
        sum += a; 
  
    # Check if final sign must 
    # be -ve or + ve 
    if (b < 0): 
        sum = flipSign(sum); 
  
    return sum
  
# Function to divide a by b by counting 
# how many times 'b' can be subtracted 
# from 'a' before getting 0 
def division(a, b): 
  
    quotient = 0
  
    # Negating b to subtract from a 
    divisor = flipSign(abs(b)); 
  
    # Subtracting divisor from dividend 
    for dividend in range(abs(a), 
                          abs(divisor) + divisor, 
                                         divisor): 
        quotient += 1
  
    # Check if a and b are of similar 
    # symbols or not 
    if (areDifferentSign(a, b)): 
        quotient = flipSign(quotient); 
    return quotient; 
  
# Driver code 
print("Subtraction is", sub(4, -2)); 
print("Product is", mul(-9, 6));
a, b = 8, 2;
if(b):
    print("Division is", division(a, b));
else:
    print("Exception :- Divide by 0"); 
  
# This code is contributed by mits

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# code to illustrate *, -, / using only 
// '+' arithmatic operator 
using System;
class GFG
{
// Function to flip the sign using only "+" 
// operator (It is simple with '*' allowed. 
// We need to do a = (-1)*a 
static int flipSign(int a) 
    int neg = 0; 
  
    // If sign is + ve turn it -ve 
    // and vice-versa 
    int tmp = a < 0 ? 1 : -1; 
    while (a != 0) 
    
        neg += tmp; 
        a += tmp; 
    
    return neg; 
  
// Check if a and b are of different signs 
static bool areDifferentSign(int a, int b) 
    return ((a < 0 && b > 0) || (a > 0 && b < 0)); 
  
// Function to subtract two numbers 
// by negating b and adding them 
static int sub(int a, int b) 
    // Negating b 
    return a + flipSign(b); 
  
// Function to multiply a by b by 
// adding a to itself b times 
static int mul(int a, int b) 
    // because algo is faster if b<a 
    if (a < b) 
        return mul(b, a); 
  
    // Adding a to itself b times 
    int sum = 0; 
    for (int i = Math.Abs(b); i > 0; i--) 
        sum += a; 
  
    // Check if final sign must be -ve or + ve 
    if (b < 0) 
        sum = flipSign(sum); 
  
    return sum; 
  
// Function to divide a by b by counting how many 
// times 'b' can be subtracted from 'a' before 
// getting 0 
static int division(int a, int b) 
    // Raise exception if b is 0 
    if (b == 0) 
        throw new ArithmeticException(); 
  
    int quotient = 0, dividend; 
  
    // Negating b to subtract from a 
    int divisor = flipSign(Math.Abs(b)); 
  
    // Subtracting divisor from dividend 
    for (dividend = Math.Abs(a); dividend >= Math.Abs(divisor); 
                                dividend += divisor) 
        quotient++; 
  
    // Check if a and b are of similar symbols or not 
    if (areDifferentSign(a, b)) 
        quotient = flipSign(quotient); 
    return quotient; 
  
// Driver code 
public static void Main() 
    Console.WriteLine("Subtraction is " + sub(4, -2)); 
    Console.WriteLine("Product is " + mul(-9, 6)); 
    try
    
        Console.WriteLine("Division is " + division(8, 2)); 
    
    catch (Exception) 
    
        Console.WriteLine("Exception :- Divide by 0"); 
    
}
  
//This code is contributed by mits

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP code to illustrate *, -, / using only 
// '+' arithmatic operator 
  
// Function to flip the sign using only "+" 
// operator (It is simple with '*' allowed. 
// We need to do a = (-1)*a 
function flipSign($a
    $neg = 0; 
  
    // If sign is + ve turn it -ve 
    // and vice-versa 
    $tmp = $a < 0 ? 1 : -1; 
    while ($a != 0) 
    
        $neg += $tmp
        $a += $tmp
    
    return $neg
  
// Check if a and b are of different signs 
function areDifferentSign($a, $b
    return (($a < 0 && $b > 0) || 
            ($a > 0 && $b < 0)); 
  
// Function to subtract two numbers 
// by negating b and adding them 
function sub($a, $b
    // Negating b 
    return $a + flipSign($b); 
  
// Function to multiply a by b by 
// adding a to itself b times 
function mul($a, $b
    // because algo is faster if b<a 
    if ($a < $b
        return mul($b, $a); 
  
    // Adding a to itself b times 
    $sum = 0; 
    for ($i = abs($b); $i > 0; $i--) 
        $sum += $a
  
    // Check if final sign must be 
    // -ve or + ve 
    if ($b < 0) 
        $sum = flipSign($sum); 
  
    return $sum
  
// Function to divide a by b by counting 
// how many times 'b' can be subtracted 
// from 'a' before getting 0 
function division($a, $b
{
    $quotient = 0; 
  
    // Negating b to subtract from a 
    $divisor = flipSign(abs($b)); 
  
    // Subtracting divisor from dividend 
    for ($dividend = abs($a);
         $dividend >= abs($divisor); 
         $dividend += $divisor
        $quotient++; 
  
    // Check if a and b are of similar
    // symbols or not 
    if (areDifferentSign($a, $b)) 
        $quotient = flipSign($quotient); 
    return $quotient
  
// Driver code 
print("Subtraction is " . sub(4, -2) . "\n"); 
print("Product is " . mul(-9, 6) . "\n");
list($a, $b) = array(8, 2);
if($b)
    print("Division is " . division($a, $b));
else
    print("Exception :- Divide by 0"); 
  
// This code is contributed by mits
?>

chevron_right



Output:

Subtraction is 6
Product is -54
Division is 4

Related Articles :

This article is contributed by Sakshi Tiwari. If you like GeeksforGeeks (We know you do!) and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up

Improved By : Mithun Kumar



Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.