Open In App
Related Articles

Recaman’s sequence

Improve Article
Improve
Save Article
Save
Like Article
Like

Given an integer n. Print first n elements of Recaman’s sequence.
Examples: 
 

Input : n = 6
Output : 0, 1, 3, 6, 2, 7

Input  : n = 17
Output : 0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 
         11, 22, 10, 23, 9, 24, 8

It is basically a function with domain and co-domain as natural numbers and 0. It is recursively defined as below: 
Specifically, let a(n) denote the (n+1)-th term. (0 is already there). 
The rule says: 

a(0) = 0,
if n > 0 and the number is not 
   already included in the sequence,
     a(n) = a(n - 1) - n 
else 
     a(n) = a(n-1) + n. 

 

Below is a simple implementation where we store all n Recaman Sequence numbers in an array. We compute the next number using the recursive formula mentioned above. 
 

C++




// C++ program to print n-th number in Recaman's
// sequence
#include <bits/stdc++.h>
using namespace std;
 
// Prints first n terms of Recaman sequence
int recaman(int n)
{
    // Create an array to store terms
    int arr[n];
 
    // First term of the sequence is always 0
    arr[0] = 0;
    printf("%d, ", arr[0]);
 
    // Fill remaining terms using recursive
    // formula.
    for (int i=1; i< n; i++)
    {
        int curr = arr[i-1] - i;
        int j;
        for (j = 0; j < i; j++)
        {
            // If arr[i-1] - i is negative or
            // already exists.
            if ((arr[j] == curr) || curr < 0)
            {
                curr = arr[i-1] + i;
                break;
            }
        }
 
        arr[i] = curr;
        printf("%d, ", arr[i]);
    }
}
 
// Driver code
int main()
{
    int n = 17;
    recaman(n);
    return 0;
}


Java




// Java program to print n-th number in Recaman's
// sequence
import java.io.*;
 
class GFG {
     
    // Prints first n terms of Recaman sequence
    static void recaman(int n)
    {
        // Create an array to store terms
        int arr[] = new int[n];
     
        // First term of the sequence is always 0
        arr[0] = 0;
        System.out.print(arr[0]+" ,");
     
        // Fill remaining terms using recursive
        // formula.
        for (int i = 1; i < n; i++)
        {
            int curr = arr[i - 1] - i;
            int j;
            for (j = 0; j < i; j++)
            {
                // If arr[i-1] - i is negative or
                // already exists.
                if ((arr[j] == curr) || curr < 0)
                {
                    curr = arr[i - 1] + i;
                    break;
                }
            }
     
            arr[i] = curr;
            System.out.print(arr[i]+", ");
             
        }
    }
     
    // Driver code
    public static void main (String[] args)
    {
        int n = 17;
        recaman(n);
 
    }
}
 
// This code is contributed by vt_m


Python 3




# Python 3 program to print n-th
# number in Recaman's sequence
 
# Prints first n terms of Recaman
# sequence
def recaman(n):
 
    # Create an array to store terms
    arr = [0] * n
 
    # First term of the sequence
    # is always 0
    arr[0] = 0
    print(arr[0], end=", ")
 
    # Fill remaining terms using
    # recursive formula.
    for i in range(1, n):
     
        curr = arr[i-1] - i
        for j in range(0, i):
         
            # If arr[i-1] - i is
            # negative or already
            # exists.
            if ((arr[j] == curr) or curr < 0):
                curr = arr[i-1] + i
                break
             
        arr[i] = curr
        print(arr[i], end=", ")
 
# Driver code
n = 17
 
recaman(n)
 
# This code is contributed by Smitha.


C#




// C# program to print n-th number in Recaman's
// sequence
using System;
 
class GFG {
     
    // Prints first n terms of Recaman sequence
    static void recaman(int n)
    {
        // Create an array to store terms
        int []arr = new int[n];
     
        // First term of the sequence is always 0
        arr[0] = 0;
        Console.Write(arr[0]+" ,");
     
        // Fill remaining terms using recursive
        // formula.
        for (int i = 1; i < n; i++)
        {
            int curr = arr[i - 1] - i;
            int j;
            for (j = 0; j < i; j++)
            {
                // If arr[i-1] - i is negative or
                // already exists.
                if ((arr[j] == curr) || curr < 0)
                {
                    curr = arr[i - 1] + i;
                    break;
                }
            }
     
            arr[i] = curr;
        Console.Write(arr[i]+", ");
             
        }
    }
     
    // Driver code
    public static void Main ()
    {
        int n = 17;
        recaman(n);
 
    }
}
 
// This code is contributed by vt_m.


PHP




<?php
// PHP program to print n-th
// number in Recaman's sequence
 
// Prints first n terms
// of Recaman sequence
function recaman($n)
{
     
    // First term of the
    // sequence is always 0
    $arr[0] = 0;
    echo $arr[0], ", ";
 
    // Fill remaining terms
    // using recursive formula.
    for ($i = 1; $i < $n; $i++)
    {
            $curr = $arr[$i - 1] - $i;
            $j;
        for ($j = 0; $j < $i; $j++)
        {
             
            // If arr[i-1] - i
            // is negative or
            // already exists.
            if (($arr[$j] == $curr) || $curr < 0)
            {
                $curr = $arr[$i-1] + $i;
                break;
            }
        }
 
        $arr[$i] = $curr;
        echo $arr[$i], ", ";
    }
}
 
    // Driver Code
    $n = 17;
    recaman($n);
     
// This code is contributed by Ajit
?>


Javascript




<script>
 
    // Javascript program to print
    // n-th number in Recaman's sequence
     
    // Prints first n terms of Recaman sequence
    function recaman(n)
    {
        // Create an array to store terms
        let arr = new Array(n);
       
        // First term of the sequence is always 0
        arr[0] = 0;
        document.write(arr[0]+" ,");
       
        // Fill remaining terms using recursive
        // formula.
        for (let i = 1; i < n; i++)
        {
            let curr = arr[i - 1] - i;
            let j;
            for (j = 0; j < i; j++)
            {
                // If arr[i-1] - i is negative or
                // already exists.
                if ((arr[j] == curr) || curr < 0)
                {
                    curr = arr[i - 1] + i;
                    break;
                }
            }
       
            arr[i] = curr;
        document.write(arr[i]+", ");
               
        }
    }
     
      let n = 17;
      recaman(n);
     
</script>


Output:  

0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 11, 22, 10, 23, 9, 24, 8, 

Time Complexity : O(n2
Auxiliary Space : O(n), since n extra space has been added
Optimizations : 
We can use hashing to store previously computed values and can make this program work in O(n) time. 
 

C++




// C++ program to print n-th number in Recaman's
// sequence
#include <bits/stdc++.h>
using namespace std;
 
// Prints first n terms of Recaman sequence
void recaman(int n)
{
    if (n <= 0)
      return;
 
    // Print first term and store it in a hash
    printf("%d, ", 0);
    unordered_set<int> s;
    s.insert(0);
 
    // Print remaining terms using recursive
    // formula.
    int prev = 0;
    for (int i=1; i< n; i++)
    {
        int curr = prev - i;
 
        // If arr[i-1] - i is negative or
        // already exists.
        if (curr < 0 || s.find(curr) != s.end())
           curr = prev + i;
 
        s.insert(curr);
 
        printf("%d, ", curr);
        prev = curr;
    }
}
 
// Driver code
int main()
{
    int n = 17;
    recaman(n);
    return 0;
}


Java




// Java program to print n-th number
// in Recaman's sequence
import java.util.*;
 
class GFG
{
 
// Prints first n terms of Recaman sequence
static void recaman(int n)
{
    if (n <= 0)
    return;
 
    // Print first term and store it in a hash
    System.out.printf("%d, ", 0);
    HashSet<Integer> s = new HashSet<Integer>();
    s.add(0);
 
    // Print remaining terms using
    // recursive formula.
    int prev = 0;
    for (int i = 1; i< n; i++)
    {
        int curr = prev - i;
 
        // If arr[i-1] - i is negative or
        // already exists.
        if (curr < 0 || s.contains(curr))
            curr = prev + i;
 
        s.add(curr);
 
        System.out.printf("%d, ", curr);
        prev = curr;
    }
}
 
// Driver code
public static void main(String[] args)
{
    int n = 17;
    recaman(n);
}
}
 
// This code is contributed by Rajput-Ji


Python3




# Python3 program to print n-th number in
# Recaman's sequence
 
# Prints first n terms of Recaman sequence
def recaman(n):
 
    if(n <= 0):
        return
 
    # Print first term and store it in a hash
    print(0, ",", end='')
    s = set([])
    s.add(0)
 
    # Print remaining terms using recursive
    # formula.
    prev = 0
    for i in range(1, n):
 
        curr = prev - i
 
        # If arr[i-1] - i is negative or
        # already exists.
        if(curr < 0 or curr in s):
            curr = prev + i
 
        s.add(curr)
 
        print(curr, ",", end='')
        prev = curr
 
# Driver code
if __name__=='__main__':
    n = 17
    recaman(n)
 
# This code is contributed by
# Sanjit_Prasad


C#




// C# program to print n-th number
// in Recaman's sequence
using System;
using System.Collections.Generic;
 
class GFG
{
 
// Prints first n terms of Recaman sequence
static void recaman(int n)
{
    if (n <= 0)
    return;
 
    // Print first term and store it in a hash
    Console.Write("{0}, ", 0);
    HashSet<int> s = new HashSet<int>();
    s.Add(0);
 
    // Print remaining terms using
    // recursive formula.
    int prev = 0;
    for (int i = 1; i < n; i++)
    {
        int curr = prev - i;
 
        // If arr[i-1] - i is negative or
        // already exists.
        if (curr < 0 || s.Contains(curr))
            curr = prev + i;
 
        s.Add(curr);
 
        Console.Write("{0}, ", curr);
        prev = curr;
    }
}
 
// Driver code
public static void Main(String[] args)
{
    int n = 17;
    recaman(n);
}
}
 
// This code is contributed by Princi Singh


PHP




<?php
// PHP program to print n-th number in
// Recaman's sequence
 
// Prints first n terms of Recaman sequence
function recaman($n)
{
    if($n <= 0)
        return;
 
    // Print first term and store
    // it in a hash
    print("0, ");
    $s = array();
    array_push($s, 0);
 
    // Print remaining terms using recursive
    // formula.
    $prev = 0;
    for ($i = 1; $i < $n; $i++)
    {
        $curr = $prev - $i;
 
        // If arr[i-1] - i is negative or
        // already exists.
        if($curr < 0 or in_array($curr, $s))
            $curr = $prev + $i;
 
        array_push($s, $curr);
 
        print($curr.", ");
        $prev = $curr;
    }
         
}
 
// Driver code
$n = 17;
recaman($n);
 
// This code is contributed by chandan_jnu
?>


Javascript




<script>
 
//  Javascript program to print n-th number
// in Recaman's sequence
 
// Prints first n terms of Recaman sequence
function recaman(n)
{
    if (n <= 0)
    return;
  
    // Print first term and store it in a hash
    document.write(0 + ", ");
    let s = new Set();
    s.add(0);
  
    // Print remaining terms using
    // recursive formula.
    let prev = 0;
    for (let i = 1; i< n; i++)
    {
        let curr = prev - i;
  
        // If arr[i-1] - i is negative or
        // already exists.
        if (curr < 0 || s.has(curr))
            curr = prev + i;
  
        s.add(curr);
  
        document.write(curr + ", ");
        prev = curr;
    }
}
     
    // Driver code
     
    let n = 17;
    recaman(n);
     
</script>


Output: 
 

0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 11, 22, 10, 23, 9, 24, 8, 

Time Complexity : O(n) 
Auxiliary Space : O(n), since n extra space has been taken.
If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 27 Aug, 2022
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials