Recaman’s sequence

Given an integer n. Print first n elements of Recamanâ€™s sequence.
Examples:

```Input : n = 6
Output : 0, 1, 3, 6, 2, 7

Input  : n = 17
Output : 0, 1, 3, 6, 2, 7, 13, 20, 12, 21,
11, 22, 10, 23, 9, 24, 8```

It is basically a function with domain and co-domain as natural numbers and 0. It is recursively defined as below:
Specifically, let a(n) denote the (n+1)-th term. (0 is already there).
The rule says:

```a(0) = 0,
if n > 0 and the number is not
already included in the sequence,
a(n) = a(n - 1) - n
else
a(n) = a(n-1) + n. ```

Below is a simple implementation where we store all n Recaman Sequence numbers in an array. We compute the next number using the recursive formula mentioned above.

C++

 `// C++ program to print n-th number in Recaman's ` `// sequence` `#include ` `using` `namespace` `std;`   `// Prints first n terms of Recaman sequence` `int` `recaman(``int` `n)` `{` `    ``// Create an array to store terms` `    ``int` `arr[n];`   `    ``// First term of the sequence is always 0` `    ``arr[0] = 0;` `    ``printf``(``"%d, "``, arr[0]);`   `    ``// Fill remaining terms using recursive` `    ``// formula.` `    ``for` `(``int` `i=1; i< n; i++)` `    ``{` `        ``int` `curr = arr[i-1] - i;` `        ``int` `j;` `        ``for` `(j = 0; j < i; j++)` `        ``{` `            ``// If arr[i-1] - i is negative or` `            ``// already exists.` `            ``if` `((arr[j] == curr) || curr < 0)` `            ``{` `                ``curr = arr[i-1] + i;` `                ``break``;` `            ``}` `        ``}`   `        ``arr[i] = curr;` `        ``printf``(``"%d, "``, arr[i]);` `    ``}` `}`   `// Driver code` `int` `main()` `{` `    ``int` `n = 17;` `    ``recaman(n);` `    ``return` `0;` `}`

Java

 `// Java program to print n-th number in Recaman's ` `// sequence` `import` `java.io.*;`   `class` `GFG {` `    `  `    ``// Prints first n terms of Recaman sequence` `    ``static` `void` `recaman(``int` `n)` `    ``{` `        ``// Create an array to store terms` `        ``int` `arr[] = ``new` `int``[n];` `    `  `        ``// First term of the sequence is always 0` `        ``arr[``0``] = ``0``;` `        ``System.out.print(arr[``0``]+``" ,"``);` `    `  `        ``// Fill remaining terms using recursive` `        ``// formula.` `        ``for` `(``int` `i = ``1``; i < n; i++)` `        ``{` `            ``int` `curr = arr[i - ``1``] - i;` `            ``int` `j;` `            ``for` `(j = ``0``; j < i; j++)` `            ``{` `                ``// If arr[i-1] - i is negative or` `                ``// already exists.` `                ``if` `((arr[j] == curr) || curr < ``0``)` `                ``{` `                    ``curr = arr[i - ``1``] + i;` `                    ``break``;` `                ``}` `            ``}` `    `  `            ``arr[i] = curr;` `            ``System.out.print(arr[i]+``", "``);` `            `  `        ``}` `    ``}` `    `  `    ``// Driver code` `    ``public` `static` `void` `main (String[] args) ` `    ``{` `        ``int` `n = ``17``;` `        ``recaman(n);`   `    ``}` `}`   `// This code is contributed by vt_m`

Python 3

 `# Python 3 program to print n-th` `# number in Recaman's sequence`   `# Prints first n terms of Recaman` `# sequence` `def` `recaman(n):`   `    ``# Create an array to store terms` `    ``arr ``=` `[``0``] ``*` `n`   `    ``# First term of the sequence` `    ``# is always 0` `    ``arr[``0``] ``=` `0` `    ``print``(arr[``0``], end``=``", "``)`   `    ``# Fill remaining terms using` `    ``# recursive formula.` `    ``for` `i ``in` `range``(``1``, n):` `    `  `        ``curr ``=` `arr[i``-``1``] ``-` `i` `        ``for` `j ``in` `range``(``0``, i):` `        `  `            ``# If arr[i-1] - i is` `            ``# negative or already` `            ``# exists.` `            ``if` `((arr[j] ``=``=` `curr) ``or` `curr < ``0``):` `                ``curr ``=` `arr[i``-``1``] ``+` `i` `                ``break` `            `  `        ``arr[i] ``=` `curr` `        ``print``(arr[i], end``=``", "``)`   `# Driver code` `n ``=` `17`   `recaman(n)`   `# This code is contributed by Smitha.`

C#

 `// C# program to print n-th number in Recaman's ` `// sequence` `using` `System;`   `class` `GFG {` `    `  `    ``// Prints first n terms of Recaman sequence` `    ``static` `void` `recaman(``int` `n)` `    ``{` `        ``// Create an array to store terms` `        ``int` `[]arr = ``new` `int``[n];` `    `  `        ``// First term of the sequence is always 0` `        ``arr[0] = 0;` `        ``Console.Write(arr[0]+``" ,"``);` `    `  `        ``// Fill remaining terms using recursive` `        ``// formula.` `        ``for` `(``int` `i = 1; i < n; i++)` `        ``{` `            ``int` `curr = arr[i - 1] - i;` `            ``int` `j;` `            ``for` `(j = 0; j < i; j++)` `            ``{` `                ``// If arr[i-1] - i is negative or` `                ``// already exists.` `                ``if` `((arr[j] == curr) || curr < 0)` `                ``{` `                    ``curr = arr[i - 1] + i;` `                    ``break``;` `                ``}` `            ``}` `    `  `            ``arr[i] = curr;` `        ``Console.Write(arr[i]+``", "``);` `            `  `        ``}` `    ``}` `    `  `    ``// Driver code` `    ``public` `static` `void` `Main () ` `    ``{` `        ``int` `n = 17;` `        ``recaman(n);`   `    ``}` `}`   `// This code is contributed by vt_m.`

PHP

 ``

Javascript

 ``

Output:

`0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 11, 22, 10, 23, 9, 24, 8, `

Time Complexity : O(n2
Auxiliary Space : O(n), since n extra space has been added
Optimizations :
We can use hashing to store previously computed values and can make this program work in O(n) time.

C++

 `// C++ program to print n-th number in Recaman's ` `// sequence` `#include ` `using` `namespace` `std;`   `// Prints first n terms of Recaman sequence` `void` `recaman(``int` `n)` `{` `    ``if` `(n <= 0)` `      ``return``;`   `    ``// Print first term and store it in a hash ` `    ``printf``(``"%d, "``, 0);` `    ``unordered_set<``int``> s;` `    ``s.insert(0);`   `    ``// Print remaining terms using recursive` `    ``// formula.` `    ``int` `prev = 0;` `    ``for` `(``int` `i=1; i< n; i++)` `    ``{` `        ``int` `curr = prev - i;`   `        ``// If arr[i-1] - i is negative or` `        ``// already exists.` `        ``if` `(curr < 0 || s.find(curr) != s.end())` `           ``curr = prev + i;`   `        ``s.insert(curr);`   `        ``printf``(``"%d, "``, curr);` `        ``prev = curr;` `    ``}` `}`   `// Driver code` `int` `main()` `{` `    ``int` `n = 17;` `    ``recaman(n);` `    ``return` `0;` `}`

Java

 `// Java program to print n-th number ` `// in Recaman's sequence` `import` `java.util.*;`   `class` `GFG` `{`   `// Prints first n terms of Recaman sequence` `static` `void` `recaman(``int` `n)` `{` `    ``if` `(n <= ``0``)` `    ``return``;`   `    ``// Print first term and store it in a hash ` `    ``System.out.printf(``"%d, "``, ``0``);` `    ``HashSet s = ``new` `HashSet();` `    ``s.add(``0``);`   `    ``// Print remaining terms using ` `    ``// recursive formula.` `    ``int` `prev = ``0``;` `    ``for` `(``int` `i = ``1``; i< n; i++)` `    ``{` `        ``int` `curr = prev - i;`   `        ``// If arr[i-1] - i is negative or` `        ``// already exists.` `        ``if` `(curr < ``0` `|| s.contains(curr))` `            ``curr = prev + i;`   `        ``s.add(curr);`   `        ``System.out.printf(``"%d, "``, curr);` `        ``prev = curr;` `    ``}` `}`   `// Driver code` `public` `static` `void` `main(String[] args)` `{` `    ``int` `n = ``17``;` `    ``recaman(n);` `}` `}`   `// This code is contributed by Rajput-Ji`

Python3

 `# Python3 program to print n-th number in` `# Recaman's sequence`   `# Prints first n terms of Recaman sequence` `def` `recaman(n):`   `    ``if``(n <``=` `0``):` `        ``return`   `    ``# Print first term and store it in a hash` `    ``print``(``0``, ``","``, end``=``'')` `    ``s ``=` `set``([])` `    ``s.add(``0``)`   `    ``# Print remaining terms using recursive` `    ``# formula.` `    ``prev ``=` `0` `    ``for` `i ``in` `range``(``1``, n):`   `        ``curr ``=` `prev ``-` `i`   `        ``# If arr[i-1] - i is negative or` `        ``# already exists.` `        ``if``(curr < ``0` `or` `curr ``in` `s):` `            ``curr ``=` `prev ``+` `i`   `        ``s.add(curr)`   `        ``print``(curr, ``","``, end``=``'')` `        ``prev ``=` `curr`   `# Driver code` `if` `__name__``=``=``'__main__'``:` `    ``n ``=` `17` `    ``recaman(n)`   `# This code is contributed by` `# Sanjit_Prasad`

C#

 `// C# program to print n-th number ` `// in Recaman's sequence` `using` `System;` `using` `System.Collections.Generic;`   `class` `GFG` `{`   `// Prints first n terms of Recaman sequence` `static` `void` `recaman(``int` `n)` `{` `    ``if` `(n <= 0)` `    ``return``;`   `    ``// Print first term and store it in a hash ` `    ``Console.Write(``"{0}, "``, 0);` `    ``HashSet<``int``> s = ``new` `HashSet<``int``>();` `    ``s.Add(0);`   `    ``// Print remaining terms using ` `    ``// recursive formula.` `    ``int` `prev = 0;` `    ``for` `(``int` `i = 1; i < n; i++)` `    ``{` `        ``int` `curr = prev - i;`   `        ``// If arr[i-1] - i is negative or` `        ``// already exists.` `        ``if` `(curr < 0 || s.Contains(curr))` `            ``curr = prev + i;`   `        ``s.Add(curr);`   `        ``Console.Write(``"{0}, "``, curr);` `        ``prev = curr;` `    ``}` `}`   `// Driver code` `public` `static` `void` `Main(String[] args)` `{` `    ``int` `n = 17;` `    ``recaman(n);` `}` `}`   `// This code is contributed by Princi Singh`

PHP

 ``

Javascript

 ``

Output:

`0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 11, 22, 10, 23, 9, 24, 8, `

Time Complexity : O(n)
Auxiliary Space : O(n), since n extra space has been taken.
If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Previous
Next
Similar Reads
Complete Tutorials