Recaman’s sequence

Given an integer n. Print first n elements of Recaman’s sequence.

Examples:

Input : n = 6
Output : 0, 1, 3, 6, 2, 7

Input  : n = 17
Output : 0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 
         11, 22, 10, 23, 9, 24, 8

It is basically a function with domain and co-domain as natural numbers and 0. It is recursively defined as below:
Specifically, let a(n) denote the (n+1)-th term. (0 being already there).
The rule says:

a(0) = 0,
if n > 0 and the number is not 
   already included in the sequence,
     a(n) = a(n - 1) - n 
else 
     a(n) = a(n-1) + n. 



Below is simple implementation where we store all n Recaman Sequence numbers in an array. We compute next number using recursive formula mentioned above.

C++

// C++ program to print n-th number in Recaman's 
// sequence
#include <bits/stdc++.h>
using namespace std;
  
// Prints first n terms of Recaman sequence
int recaman(int n)
{
    // Create an array to store terms
    int arr[n];
  
    // First term of the sequence is always 0
    arr[0] = 0;
    printf("%d, ", arr[0]);
  
    // Fill remaining terms using recursive
    // formula.
    for (int i=1; i< n; i++)
    {
        int curr = arr[i-1] - i;
        int j;
        for (j = 0; j < i; j++)
        {
            // If arr[i-1] - i is negative or
            // already exists.
            if ((arr[j] == curr) || curr < 0)
            {
                curr = arr[i-1] + i;
                break;
            }
        }
  
        arr[i] = curr;
        printf("%d, ", arr[i]);
    }
}
  
// Driver code
int main()
{
    int n = 17;
    recaman(n);
    return 0;
}

Java

// Java program to print n-th number in Recaman's 
// sequence
import java.io.*;
  
class GFG {
      
    // Prints first n terms of Recaman sequence
    static void recaman(int n)
    {
        // Create an array to store terms
        int arr[] = new int[n];
      
        // First term of the sequence is always 0
        arr[0] = 0;
        System.out.print(arr[0]+" ,");
      
        // Fill remaining terms using recursive
        // formula.
        for (int i = 1; i < n; i++)
        {
            int curr = arr[i - 1] - i;
            int j;
            for (j = 0; j < i; j++)
            {
                // If arr[i-1] - i is negative or
                // already exists.
                if ((arr[j] == curr) || curr < 0)
                {
                    curr = arr[i - 1] + i;
                    break;
                }
            }
      
            arr[i] = curr;
            System.out.print(arr[i]+", ");
              
        }
    }
      
    // Driver code
    public static void main (String[] args) 
    {
        int n = 17;
        recaman(n);
  
    }
}
  
// This code is contributed by vt_m

Python 3

# Python 3 program to print n-th
# number in Recaman's sequence
  
# Prints first n terms of Recaman
# sequence
def recaman(n):
  
    # Create an array to store terms
    arr = [0] * n
  
    # First term of the sequence
    # is always 0
    arr[0] = 0
    print(arr[0], end=", ")
  
    # Fill remaining terms using
    # recursive formula.
    for i in range(1, n):
      
        curr = arr[i-1] - i
        for j in range(0, i):
          
            # If arr[i-1] - i is
            # negative or already
            # exists.
            if ((arr[j] == curr) or curr < 0):
                curr = arr[i-1] + i
                break
              
        arr[i] = curr
        print(arr[i], end=", ")
  
# Driver code
n = 17
  
recaman(n)
  
# This code is contributed by Smitha.

C#

// C# program to print n-th number in Recaman's 
// sequence
using System;
  
class GFG {
      
    // Prints first n terms of Recaman sequence
    static void recaman(int n)
    {
        // Create an array to store terms
        int []arr = new int[n];
      
        // First term of the sequence is always 0
        arr[0] = 0;
        Console.Write(arr[0]+" ,");
      
        // Fill remaining terms using recursive
        // formula.
        for (int i = 1; i < n; i++)
        {
            int curr = arr[i - 1] - i;
            int j;
            for (j = 0; j < i; j++)
            {
                // If arr[i-1] - i is negative or
                // already exists.
                if ((arr[j] == curr) || curr < 0)
                {
                    curr = arr[i - 1] + i;
                    break;
                }
            }
      
            arr[i] = curr;
        Console.Write(arr[i]+", ");
              
        }
    }
      
    // Driver code
    public static void Main () 
    {
        int n = 17;
        recaman(n);
  
    }
}
  
// This code is contributed by vt_m.

PHP

<?php
// PHP program to print n-th
// number in Recaman's sequence
  
// Prints first n terms 
// of Recaman sequence
function recaman($n)
{
      
    // First term of the 
    // sequence is always 0
    $arr[0] = 0;
    echo $arr[0], ", ";
  
    // Fill remaining terms 
    // using recursive formula.
    for ($i = 1; $i < $n; $i++)
    {
            $curr = $arr[$i - 1] - $i;
            $j;
        for ($j = 0; $j < $i; $j++)
        {
              
            // If arr[i-1] - i
            // is negative or
            // already exists.
            if (($arr[$j] == $curr) || $curr < 0)
            {
                $curr = $arr[$i-1] + $i;
                break;
            }
        }
  
        $arr[$i] = $curr;
        echo $arr[$i], ", ";
    }
}
  
    // Driver Code
    $n = 17;
    recaman($n);
      
// This code is contributed by Ajit
?>


Output:

0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 11, 22, 10, 23, 9, 24, 8, 

Time Complexity : O(n2)
Auxiliary Space : O(n)

 

Optimizations :
We can use hashing to store previously computed values and can make this program work in O(n) time.

C++

// C++ program to print n-th number in Recaman's 
// sequence
#include <bits/stdc++.h>
using namespace std;
  
// Prints first n terms of Recaman sequence
void recaman(int n)
{
    if (n <= 0)
      return;
  
    // Print first term and store it in a hash 
    printf("%d, ", 0);
    unordered_set<int> s;
    s.insert(0);
  
    // Print remaining terms using recursive
    // formula.
    int prev = 0;
    for (int i=1; i< n; i++)
    {
        int curr = prev - i;
  
        // If arr[i-1] - i is negative or
        // already exists.
        if (curr < 0 || s.find(curr) != s.end())
           curr = prev + i;
  
        s.insert(curr);
  
        printf("%d, ", curr);
        prev = curr;
    }
}
  
// Driver code
int main()
{
    int n = 17;
    recaman(n);
    return 0;
}

Python3

# Python3 program to print n-th number in
# Recaman's sequence
  
# Prints first n terms of Recaman sequence
def recaman(n):
  
    if(n <= 0):
        return
  
    # Print first term and store it in a hash
    print(0, ",", end='')
    s = set([])
    s.add(0)
  
    # Print remaining terms using recursive
    # formula.
    prev = 0
    for i in range(1, n):
  
        curr = prev - i
  
        # If arr[i-1] - i is negative or
        # already exists.
        if(curr < 0 or curr in s):
            curr = prev + i
  
        s.add(curr)
  
        print(curr, ",", end='')
        prev = curr
  
# Driver code
if __name__=='__main__':
    n = 17
    recaman(n)
  
# This code is contributed by
# Sanjit_Prasad


Output:

0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 11, 22, 10, 23, 9, 24, 8, 

Time Complexity : O(n)
Auxiliary Space : O(n)

This article is contributed by Kishlay Verma. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up