Open In App
Related Articles

Count numbers in a given range having prime and non-prime digits at prime and non-prime positions respectively

Improve Article
Improve
Save Article
Save
Like Article
Like

Given two integers L and R, the task is to find the count of numbers in the range [L, R] having prime digits at prime positions and non-prime digits at non-prime positions.

Examples:

Input: L = 5, R = 22  
Output: 7
Explanation: The numbers 6, 8, 9, 12, 13, 15, and 17 have prime digits at prime positions and non-prime digits at non-prime positions.

Input: L = 20, R = 29
Output: 0
Explanation: There are no numbers which have prime digits at prime positions and non-prime digits at non-prime positions.

 

Naive Approach: The simplest approach to solve the problem is to iterate over the range [L, R]. For every ith number check if the digits of the number is prime at prime positions and non-prime at non-prime positions or not. If found to be true, then increment the count. Finally, print the count obtained. 

Time Complexity: O(R – L + 1) * sqrt(R) * log10(R) 
Auxiliary Space: O(1)

Efficient Approach: To optimize the above approach, the idea is to use Digit DP. Following are the recurrence relation between the dynamic programming states:

CntNum(pos, st, tight, prime)
= \sum^{9}_{i=0} cntNum(pos + 1, st | (i > 0), tight \& (i==end), prime + x)
If i is a prime at prime digits or non-prime at non-prime digits, then x = 1 
 
pos: Stores position of digits 
prime: Check if prime digits are present at prime positions and non-prime digits at non-prime positions are present or not. 
st: check if a number contains any leading 0. 
end: Maximum possible digits at current position

 

Follow the steps below to solve the problem:

  • Initialize a 4D array, say dp[pos][st][tight][prime].
  • Compute the value of dp[pos][st][tight][prime] for the number R using memorization, say cntR.
  • Compute the value of dp[pos][st][tight][prime] for the number L – 1 using memorization, say cntL.
  • Finally, print the value of (cntR – cntL).

Below is the implementation of the above approach:

C++14




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Store digits of a number
vector<long long int> num;
 
// Store overlapping subproblems
long long int dp[19][2][2][19];
 
// Function to check if a
// number is prime or not
bool isPrime(long long int n)
{
 
    // If n is less than
    // or equal to 1
    if (n <= 1)
        return false;
 
    // If n is less than
    // or equal to 3
    if (n <= 3)
        return true;
 
    // If n is a multiple of 2 or 3
    if (n % 2 == 0 || n % 3 == 0)
        return false;
 
    // Iterate over the range [5, n]
    for (long long int i = 5; i * i <= n;
         i = i + 6) {
 
        // If n is a multiple of i or (i + 2)
        if (n % i == 0 || n % (i + 2) == 0)
            return false;
    }
 
    return true;
}
 
// Function to count the required
// numbers from the given range
long long cntNum(long long pos, long long st,
                 long long tight, long long prime)
{
 
    // Base Case
    if (pos == num.size())
        return 1;
 
    // If the subproblems already computed
    if (dp[pos][st][tight][prime] != -1)
        return dp[pos][st][tight][prime];
 
    long long int res = 0;
 
    // Stores maximum possible
    // at current digits
    long long end = (tight == 0) ? num[pos] : 9;
 
    // Iterate over all possible digits
    // at current position
    for (long long i = 0; i <= end; i++) {
 
        // Check if i is the maximum possible
        // digit at current position or not
        long long ntight = (i < end) ? 1 : tight;
 
        // Check if a number contains
        // leading 0s or not
        long long int nzero = (i != 0) ? 1 : st;
 
        // If number has only leading zeros
        // and digit is non-zero
        if ((nzero == 1) && isPrime(i) && isPrime(prime)) {
 
            // Prime digits at prime positions
            res += cntNum(pos + 1, nzero,
                          ntight, prime + 1);
        }
 
        if ((nzero == 1) && !isPrime(i) && !isPrime(prime)) {
 
            // Non-prime digits at
            // non-prime positions
            res += cntNum(pos + 1, nzero,
                          ntight, prime + 1);
        }
 
        // If the number has only leading zeros
        // and i is zero,
        if (nzero == 0)
            res += cntNum(pos + 1, nzero,
                          ntight, prime);
    }
    return dp[pos][st][tight][prime] = res;
}
 
// Function to find count of numbers in
// range [0, b] whose digits are prime
// at prime and non-prime at non-prime pos
long long int cntZeroRange(long long int b)
{
 
    num.clear();
 
    // Insert digits of a number, b
    while (b > 0) {
        num.push_back(b % 10);
        b /= 10;
    }
 
    // Reversing the digits in num
    reverse(num.begin(), num.end());
 
    // Initializing dp with -1
    memset(dp, -1, sizeof(dp));
 
    long long int res = cntNum(0, 0, 0, 1);
 
    // Returning the value
    return res;
}
 
// Driver Code
int main()
{
 
    // Given range, [L, R]
    long long int L = 5, R = 22;
 
    // Function Call
    long long int res
        = cntZeroRange(R) - cntZeroRange(L - 1);
 
    // Print answer
    cout << res << endl;
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
class GFG
{
 
// Store digits of a number
static Vector<Integer> num = new Vector<>();
 
// Store overlapping subproblems
static int [][][][]dp = new int[19][2][2][19];
 
// Function to check if a
// number is prime or not
static boolean isPrime(int n)
{
 
    // If n is less than
    // or equal to 1
    if (n <= 1)
        return false;
 
    // If n is less than
    // or equal to 3
    if (n <= 3)
        return true;
 
    // If n is a multiple of 2 or 3
    if (n % 2 == 0 || n % 3 == 0)
        return false;
 
    // Iterate over the range [5, n]
    for (int i = 5; i * i <= n;
         i = i + 6) {
 
        // If n is a multiple of i or (i + 2)
        if (n % i == 0 || n % (i + 2) == 0)
            return false;
    }
    return true;
}
 
// Function to count the required
// numbers from the given range
static int cntNum(int pos, int st,
                 int tight, int prime)
{
 
    // Base Case
    if (pos == num.size())
        return 1;
 
    // If the subproblems already computed
    if (dp[pos][st][tight][prime] != -1)
        return dp[pos][st][tight][prime];
    int res = 0;
 
    // Stores maximum possible
    // at current digits
    int end = (tight == 0) ? num.get(pos) : 9;
 
    // Iterate over all possible digits
    // at current position
    for (int i = 0; i <= end; i++)
    {
 
        // Check if i is the maximum possible
        // digit at current position or not
        int ntight = (i < end) ? 1 : tight;
 
        // Check if a number contains
        // leading 0s or not
        int nzero = (i != 0) ? 1 : st;
 
        // If number has only leading zeros
        // and digit is non-zero
        if ((nzero == 1) && isPrime(i) && isPrime(prime)) {
 
            // Prime digits at prime positions
            res += cntNum(pos + 1, nzero,
                          ntight, prime + 1);
        }
 
        if ((nzero == 1) && !isPrime(i) && !isPrime(prime)) {
 
            // Non-prime digits at
            // non-prime positions
            res += cntNum(pos + 1, nzero,
                          ntight, prime + 1);
        }
 
        // If the number has only leading zeros
        // and i is zero,
        if (nzero == 0)
            res += cntNum(pos + 1, nzero,
                          ntight, prime);
    }
    return dp[pos][st][tight][prime] = res;
}
 
// Function to find count of numbers in
// range [0, b] whose digits are prime
// at prime and non-prime at non-prime pos
static int cntZeroRange(int b)
{
 
    num.clear();
 
    // Insert digits of a number, b
    while (b > 0) {
        num.add(b % 10);
        b /= 10;
    }
 
    // Reversing the digits in num
    Collections.reverse(num);
 
    // Initializing dp with -1
    for (int i = 0; i < 19; i++)
         for (int j = 0; j < 2; j++)
             for (int k = 0; k < 2; k++)
                 for (int l = 0; l < 19; l++)
                     dp[i][j][k][l] = -1;
 
    int res = cntNum(0, 0, 0, 1);
 
    // Returning the value
    return res;
}
 
// Driver Code
public static void main(String[] args)
{
 
    // Given range, [L, R]
    int L = 5, R = 22;
 
    // Function Call
    int res
        = cntZeroRange(R) - cntZeroRange(L - 1);
 
    // Print answer
    System.out.print(res +"\n");
}
}
 
// This code is contributed by 29AjayKumar


Python3




# Python3 program for the above approach
from math import ceil, sqrt
 
# Function to check if a
# number is prime or not
def isPrime(n):
     
    # If n is less than
    # or equal to 1
    if (n <= 1):
        return False
 
    # If n is less than
    # or equal to 3
    if (n <= 3):
        return True
 
    # If n is a multiple of 2 or 3
    if (n % 2 == 0 or n % 3 == 0):
        return False
 
    # Iterate over the range [5, n]
    for i in range(5, ceil(sqrt(n)), 6):
         
        # If n is a multiple of i or (i + 2)
        if (n % i == 0 or n % (i + 2) == 0):
            return False
 
    return True
 
# Function to count the required
# numbers from the given range
def cntNum(pos, st, tight, prime):
     
    global dp, num
     
    if (pos == len(num)):
        return 1
 
    # If the subproblems already computed
    if (dp[pos][st][tight][prime] != -1):
        return dp[pos][st][tight][prime]
 
    res = 0
 
    # Stores maximum possible
    # at current digits
    end = num[pos] if (tight == 0) else  9
 
    # Iterate over all possible digits
    # at current position
    for i in range(end + 1):
         
        # Check if i is the maximum possible
        # digit at current position or not
        ntight = 1 if (i < end) else tight
 
        # Check if a number contains
        # leading 0s or not
        nzero = 1 if (i != 0) else st
 
        # If number has only leading zeros
        # and digit is non-zero
        if ((nzero == 1) and isPrime(i) and
                             isPrime(prime)):
                                  
            # Prime digits at prime positions
            res += cntNum(pos + 1, nzero, ntight,
                        prime + 1)
 
        if ((nzero == 1) and isPrime(i) == False and
                         isPrime(prime) == False):
 
            # Non-prime digits at
            # non-prime positions
            res += cntNum(pos + 1, nzero, ntight,
                        prime + 1)
 
        # If the number has only leading zeros
        # and i is zero,
        if (nzero == 0):
            res += cntNum(pos + 1, nzero,
                          ntight, prime)
                           
    dp[pos][st][tight][prime] = res
     
    return dp[pos][st][tight][prime]
 
# Function to find count of numbers in
# range [0, b] whose digits are prime
# at prime and non-prime at non-prime pos
def cntZeroRange(b):
     
    global num, dp
 
    num.clear()
     
    while (b > 0):
        num.append(b % 10)
        b //= 10
 
    # Reversing the digits in num
    num = num[::-1]
 
    # print(num)
    dp = [[[[-1 for i in range(19)]
                for i in range(2)]
                for i in range(2)]
                for i in range(19)]
 
    res = cntNum(0, 0, 0, 1)
 
    # Returning the value
    return res
 
# Driver Code
if __name__ == '__main__':
 
    dp = [[[[-1 for i in range(19)]
                for i in range(2)]
                for i in range(2)]
                for i in range(19)]
    L, R, num = 5, 22, []
 
    # Function Call
    res = cntZeroRange(R) - cntZeroRange(L - 1)
 
    # Print answer
    print(res)
 
# This code is contributed by mohit kumar 29


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
class GFG
{
 
  // Store digits of a number
  static List<int> num = new List<int>();
 
  // Store overlapping subproblems
  static int[, , , ] dp = new int[19, 2, 2, 19];
 
  // Function to check if a
  // number is prime or not
  static bool isPrime(int n)
  {
 
    // If n is less than
    // or equal to 1
    if (n <= 1)
      return false;
 
    // If n is less than
    // or equal to 3
    if (n <= 3)
      return true;
 
    // If n is a multiple of 2 or 3
    if (n % 2 == 0 || n % 3 == 0)
      return false;
 
    // Iterate over the range [5, n]
    for (int i = 5; i * i <= n; i = i + 6) {
 
      // If n is a multiple of i or (i + 2)
      if (n % i == 0 || n % (i + 2) == 0)
        return false;
    }
    return true;
  }
 
  // Function to count the required
  // numbers from the given range
  static int cntNum(int pos, int st, int tight, int prime)
  {
 
    // Base Case
    if (pos == num.Count)
      return 1;
 
    // If the subproblems already computed
    if (dp[pos, st, tight, prime] != -1)
      return dp[pos, st, tight, prime];
    int res = 0;
 
    // Stores maximum possible
    // at current digits
    int end = (tight == 0) ? num[pos] : 9;
 
    // Iterate over all possible digits
    // at current position
    for (int i = 0; i <= end; i++) {
 
      // Check if i is the maximum possible
      // digit at current position or not
      int ntight = (i < end) ? 1 : tight;
 
      // Check if a number contains
      // leading 0s or not
      int nzero = (i != 0) ? 1 : st;
 
      // If number has only leading zeros
      // and digit is non-zero
      if ((nzero == 1) && isPrime(i)
          && isPrime(prime)) {
 
        // Prime digits at prime positions
        res += cntNum(pos + 1, nzero, ntight,
                      prime + 1);
      }
 
      if ((nzero == 1) && !isPrime(i)
          && !isPrime(prime)) {
 
        // Non-prime digits at
        // non-prime positions
        res += cntNum(pos + 1, nzero, ntight,
                      prime + 1);
      }
 
      // If the number has only leading zeros
      // and i is zero,
      if (nzero == 0)
        res += cntNum(pos + 1, nzero, ntight,
                      prime);
    }
    return dp[pos, st, tight, prime] = res;
  }
 
  // Function to find count of numbers in
  // range [0, b] whose digits are prime
  // at prime and non-prime at non-prime pos
  static int cntZeroRange(int b)
  {
 
    num.Clear();
 
    // Insert digits of a number, b
    while (b > 0) {
      num.Add(b % 10);
      b /= 10;
    }
 
    // Reversing the digits in num
    num.Reverse();
 
    // Initializing dp with -1
    for (int i = 0; i < 19; i++)
      for (int j = 0; j < 2; j++)
        for (int k = 0; k < 2; k++)
          for (int l = 0; l < 19; l++)
            dp[i, j, k, l] = -1;
 
    int res = cntNum(0, 0, 0, 1);
 
    // Returning the value
    return res;
  }
 
  // Driver Code
  public static void Main(string[] args)
  {
 
    // Given range, [L, R]
    int L = 5, R = 22;
 
    // Function Call
    int res = cntZeroRange(R) - cntZeroRange(L - 1);
 
    // Print answer
    Console.WriteLine(res + "\n");
  }
}
 
// This code is contributed by chitranayal.


Javascript




<script>
 
// JavaScript program for the above approach
 
// Store digits of a number
let num = [];
 
// Store overlapping subproblems
let dp = new Array(19);
 
 
// Function to check if a
// number is prime or not
function isPrime(n)
{
    // If n is less than
    // or equal to 1
    if (n <= 1)
        return false;
  
    // If n is less than
    // or equal to 3
    if (n <= 3)
        return true;
  
    // If n is a multiple of 2 or 3
    if (n % 2 == 0 || n % 3 == 0)
        return false;
  
    // Iterate over the range [5, n]
    for (let i = 5; i * i <= n;
         i = i + 6) {
  
        // If n is a multiple of i or (i + 2)
        if (n % i == 0 || n % (i + 2) == 0)
            return false;
    }
    return true;
}
 
// Function to count the required
// numbers from the given range
function cntNum(pos,st,tight,prime)
{
    // Base Case
    if (pos == num.length)
        return 1;
  
    // If the subproblems already computed
    if (dp[pos][st][tight][prime] != -1)
        return dp[pos][st][tight][prime];
    let res = 0;
  
    // Stores maximum possible
    // at current digits
    let end = (tight == 0) ? num[pos] : 9;
  
    // Iterate over all possible digits
    // at current position
    for (let i = 0; i <= end; i++)
    {
  
        // Check if i is the maximum possible
        // digit at current position or not
        let ntight = (i < end) ? 1 : tight;
  
        // Check if a number contains
        // leading 0s or not
        let nzero = (i != 0) ? 1 : st;
  
        // If number has only leading zeros
        // and digit is non-zero
        if ((nzero == 1) && isPrime(i) && isPrime(prime)) {
  
            // Prime digits at prime positions
            res += cntNum(pos + 1, nzero,
                          ntight, prime + 1);
        }
  
        if ((nzero == 1) && !isPrime(i) && !isPrime(prime)) {
  
            // Non-prime digits at
            // non-prime positions
            res += cntNum(pos + 1, nzero,
                          ntight, prime + 1);
        }
  
        // If the number has only leading zeros
        // and i is zero,
        if (nzero == 0)
            res += cntNum(pos + 1, nzero,
                          ntight, prime);
    }
    return dp[pos][st][tight][prime] = res;
}
 
// Function to find count of numbers in
// range [0, b] whose digits are prime
// at prime and non-prime at non-prime pos
function cntZeroRange(b)
{
    num=[];
  
    // Insert digits of a number, b
    while (b > 0) {
        num.push(b % 10);
        b = Math.floor(b/10);
    }
  
    // Reversing the digits in num
    num.reverse();
     for(let i=0;i<19;i++)
{
    dp[i]=new Array(2);
    for(let j=0;j<2;j++)
    {
        dp[i][j]=new Array(2);
        for(let k=0;k<2;k++)
        {
            dp[i][j][k]=new Array(19);
            for(let l=0;l<19;l++)
            {
                dp[i][j][k][l]=-1;
            }
        }
    }
}
     
     
    let res = cntNum(0, 0, 0, 1);
  
    // Returning the value
    return res;
}
 
// Driver Code
// Given range, [L, R]
let L = 5, R = 22;
 
// Function Call
let res
= cntZeroRange(R) - cntZeroRange(L - 1);
 
// Print answer
document.write(res +"<br>");
 
 
// This code is contributed by avanitrachhadiya2155
 
</script>


Output: 

7

 

Time Complexity: O(log10(R) * log10(L) sqrt(log10(R))* 10 * 4))
Auxiliary Space: O(log10(R) * log10(L) * 4)


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 18 Jun, 2021
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials