# Count numbers in a given range having prime and non-prime digits at prime and non-prime positions respectively

Given two integers L and R, the task is to find the count of numbers in the range [L, R] having prime digits at prime positions and non-prime digits at non-prime positions.

Examples:

Input: L = 5, R = 22
Output: 7
Explanation: The numbers 6, 8, 9, 12, 13, 15, and 17 have prime digits at prime positions and non-prime digits at non-prime positions.

Input: L = 20, R = 29
Output: 0
Explanation: There are no numbers which have prime digits at prime positions and non-prime digits at non-prime positions.

Naive Approach: The simplest approach to solve the problem is to iterate over the range [L, R]. For every ith number check if the digits of the number is prime at prime positions and non-prime at non-prime positions or not. If found to be true, then increment the count. Finally, print the count obtained.

Time Complexity: O(R – L + 1) * sqrt(R) * log10(R)
Auxiliary Space: O(1)

Efficient Approach: To optimize the above approach, the idea is to use Digit DP. Following are the recurrence relation between the dynamic programming states:

If i is a prime at prime digits or non-prime at non-prime digits, then x = 1

pos: Stores position of digits
prime: Check if prime digits are present at prime positions and non-prime digits at non-prime positions are present or not.
st: check if a number contains any leading 0.
end: Maximum possible digits at current position

Follow the steps below to solve the problem:

• Initialize a 4D array, say dp[pos][st][tight][prime].
• Compute the value of dp[pos][st][tight][prime] for the number R using memorization, say cntR.
• Compute the value of dp[pos][st][tight][prime] for the number L – 1 using memorization, say cntL.
• Finally, print the value of (cntR – cntL).

Below is the implementation of the above approach:

## C++14

 // C++ program for the above approach   #include  using namespace std;   // Store digits of a number vector<long long int> num;   // Store overlapping subproblems long long int dp[19][2][2][19];   // Function to check if a // number is prime or not bool isPrime(long long int n) {       // If n is less than     // or equal to 1     if (n <= 1)         return false;       // If n is less than     // or equal to 3     if (n <= 3)         return true;       // If n is a multiple of 2 or 3     if (n % 2 == 0 || n % 3 == 0)         return false;       // Iterate over the range [5, n]     for (long long int i = 5; i * i <= n;          i = i + 6) {           // If n is a multiple of i or (i + 2)         if (n % i == 0 || n % (i + 2) == 0)             return false;     }       return true; }   // Function to count the required // numbers from the given range long long cntNum(long long pos, long long st,                  long long tight, long long prime) {       // Base Case     if (pos == num.size())         return 1;       // If the subproblems already computed     if (dp[pos][st][tight][prime] != -1)         return dp[pos][st][tight][prime];       long long int res = 0;       // Stores maximum possible     // at current digits     long long end = (tight == 0) ? num[pos] : 9;       // Iterate over all possible digits     // at current position     for (long long i = 0; i <= end; i++) {           // Check if i is the maximum possible         // digit at current position or not         long long ntight = (i < end) ? 1 : tight;           // Check if a number contains         // leading 0s or not         long long int nzero = (i != 0) ? 1 : st;           // If number has only leading zeros         // and digit is non-zero         if ((nzero == 1) && isPrime(i) && isPrime(prime)) {               // Prime digits at prime positions             res += cntNum(pos + 1, nzero,                           ntight, prime + 1);         }           if ((nzero == 1) && !isPrime(i) && !isPrime(prime)) {               // Non-prime digits at             // non-prime positions             res += cntNum(pos + 1, nzero,                           ntight, prime + 1);         }           // If the number has only leading zeros         // and i is zero,         if (nzero == 0)             res += cntNum(pos + 1, nzero,                           ntight, prime);     }     return dp[pos][st][tight][prime] = res; }   // Function to find count of numbers in // range [0, b] whose digits are prime // at prime and non-prime at non-prime pos long long int cntZeroRange(long long int b) {       num.clear();       // Insert digits of a number, b     while (b > 0) {         num.push_back(b % 10);         b /= 10;     }       // Reversing the digits in num     reverse(num.begin(), num.end());       // Initializing dp with -1     memset(dp, -1, sizeof(dp));       long long int res = cntNum(0, 0, 0, 1);       // Returning the value     return res; }   // Driver Code int main() {       // Given range, [L, R]     long long int L = 5, R = 22;       // Function Call     long long int res         = cntZeroRange(R) - cntZeroRange(L - 1);       // Print answer     cout << res << endl;     return 0; }

## Java

 // Java program for the above approach import java.util.*; class GFG {   // Store digits of a number static Vector num = new Vector<>();   // Store overlapping subproblems static int [][][][]dp = new int[19][2][2][19];   // Function to check if a // number is prime or not static boolean isPrime(int n) {       // If n is less than     // or equal to 1     if (n <= 1)         return false;       // If n is less than     // or equal to 3     if (n <= 3)         return true;       // If n is a multiple of 2 or 3     if (n % 2 == 0 || n % 3 == 0)         return false;       // Iterate over the range [5, n]     for (int i = 5; i * i <= n;          i = i + 6) {           // If n is a multiple of i or (i + 2)         if (n % i == 0 || n % (i + 2) == 0)             return false;     }     return true; }   // Function to count the required // numbers from the given range static int cntNum(int pos, int st,                  int tight, int prime) {       // Base Case     if (pos == num.size())         return 1;       // If the subproblems already computed     if (dp[pos][st][tight][prime] != -1)         return dp[pos][st][tight][prime];     int res = 0;       // Stores maximum possible     // at current digits     int end = (tight == 0) ? num.get(pos) : 9;       // Iterate over all possible digits     // at current position     for (int i = 0; i <= end; i++)     {           // Check if i is the maximum possible         // digit at current position or not         int ntight = (i < end) ? 1 : tight;           // Check if a number contains         // leading 0s or not         int nzero = (i != 0) ? 1 : st;           // If number has only leading zeros         // and digit is non-zero         if ((nzero == 1) && isPrime(i) && isPrime(prime)) {               // Prime digits at prime positions             res += cntNum(pos + 1, nzero,                           ntight, prime + 1);         }           if ((nzero == 1) && !isPrime(i) && !isPrime(prime)) {               // Non-prime digits at             // non-prime positions             res += cntNum(pos + 1, nzero,                           ntight, prime + 1);         }           // If the number has only leading zeros         // and i is zero,         if (nzero == 0)             res += cntNum(pos + 1, nzero,                           ntight, prime);     }     return dp[pos][st][tight][prime] = res; }   // Function to find count of numbers in // range [0, b] whose digits are prime // at prime and non-prime at non-prime pos static int cntZeroRange(int b) {       num.clear();       // Insert digits of a number, b     while (b > 0) {         num.add(b % 10);         b /= 10;     }       // Reversing the digits in num     Collections.reverse(num);       // Initializing dp with -1     for (int i = 0; i < 19; i++)          for (int j = 0; j < 2; j++)              for (int k = 0; k < 2; k++)                  for (int l = 0; l < 19; l++)                      dp[i][j][k][l] = -1;       int res = cntNum(0, 0, 0, 1);       // Returning the value     return res; }   // Driver Code public static void main(String[] args) {       // Given range, [L, R]     int L = 5, R = 22;       // Function Call     int res         = cntZeroRange(R) - cntZeroRange(L - 1);       // Print answer     System.out.print(res +"\n"); } }   // This code is contributed by 29AjayKumar

## Python3

 # Python3 program for the above approach from math import ceil, sqrt   # Function to check if a # number is prime or not def isPrime(n):           # If n is less than     # or equal to 1     if (n <= 1):         return False       # If n is less than     # or equal to 3     if (n <= 3):         return True       # If n is a multiple of 2 or 3     if (n % 2 == 0 or n % 3 == 0):         return False       # Iterate over the range [5, n]     for i in range(5, ceil(sqrt(n)), 6):                   # If n is a multiple of i or (i + 2)         if (n % i == 0 or n % (i + 2) == 0):             return False       return True   # Function to count the required # numbers from the given range def cntNum(pos, st, tight, prime):           global dp, num           if (pos == len(num)):         return 1       # If the subproblems already computed     if (dp[pos][st][tight][prime] != -1):         return dp[pos][st][tight][prime]       res = 0       # Stores maximum possible     # at current digits     end = num[pos] if (tight == 0) else  9       # Iterate over all possible digits     # at current position     for i in range(end + 1):                   # Check if i is the maximum possible         # digit at current position or not         ntight = 1 if (i < end) else tight           # Check if a number contains         # leading 0s or not         nzero = 1 if (i != 0) else st           # If number has only leading zeros         # and digit is non-zero         if ((nzero == 1) and isPrime(i) and                              isPrime(prime)):                                                # Prime digits at prime positions             res += cntNum(pos + 1, nzero, ntight,                          prime + 1)           if ((nzero == 1) and isPrime(i) == False and                          isPrime(prime) == False):               # Non-prime digits at             # non-prime positions             res += cntNum(pos + 1, nzero, ntight,                         prime + 1)           # If the number has only leading zeros         # and i is zero,         if (nzero == 0):             res += cntNum(pos + 1, nzero,                            ntight, prime)                                 dp[pos][st][tight][prime] = res           return dp[pos][st][tight][prime]   # Function to find count of numbers in # range [0, b] whose digits are prime # at prime and non-prime at non-prime pos def cntZeroRange(b):           global num, dp       num.clear()           while (b > 0):         num.append(b % 10)         b //= 10       # Reversing the digits in num     num = num[::-1]       # print(num)     dp = [[[[-1 for i in range(19)]                 for i in range(2)]                  for i in range(2)]                  for i in range(19)]       res = cntNum(0, 0, 0, 1)       # Returning the value     return res   # Driver Code if __name__ == '__main__':       dp = [[[[-1 for i in range(19)]                  for i in range(2)]                  for i in range(2)]                  for i in range(19)]     L, R, num = 5, 22, []       # Function Call     res = cntZeroRange(R) - cntZeroRange(L - 1)       # Print answer     print(res)   # This code is contributed by mohit kumar 29

## C#

 // C# program for the above approach using System; using System.Collections.Generic; class GFG  {     // Store digits of a number   static List<int> num = new List<int>();     // Store overlapping subproblems   static int[, , , ] dp = new int[19, 2, 2, 19];     // Function to check if a   // number is prime or not   static bool isPrime(int n)   {       // If n is less than     // or equal to 1     if (n <= 1)       return false;       // If n is less than     // or equal to 3     if (n <= 3)       return true;       // If n is a multiple of 2 or 3     if (n % 2 == 0 || n % 3 == 0)       return false;       // Iterate over the range [5, n]     for (int i = 5; i * i <= n; i = i + 6) {         // If n is a multiple of i or (i + 2)       if (n % i == 0 || n % (i + 2) == 0)         return false;     }     return true;   }     // Function to count the required   // numbers from the given range   static int cntNum(int pos, int st, int tight, int prime)   {       // Base Case     if (pos == num.Count)       return 1;       // If the subproblems already computed     if (dp[pos, st, tight, prime] != -1)       return dp[pos, st, tight, prime];     int res = 0;       // Stores maximum possible     // at current digits     int end = (tight == 0) ? num[pos] : 9;       // Iterate over all possible digits     // at current position     for (int i = 0; i <= end; i++) {         // Check if i is the maximum possible       // digit at current position or not       int ntight = (i < end) ? 1 : tight;         // Check if a number contains       // leading 0s or not       int nzero = (i != 0) ? 1 : st;         // If number has only leading zeros       // and digit is non-zero       if ((nzero == 1) && isPrime(i)           && isPrime(prime)) {           // Prime digits at prime positions         res += cntNum(pos + 1, nzero, ntight,                       prime + 1);       }         if ((nzero == 1) && !isPrime(i)           && !isPrime(prime)) {           // Non-prime digits at         // non-prime positions         res += cntNum(pos + 1, nzero, ntight,                       prime + 1);       }         // If the number has only leading zeros       // and i is zero,       if (nzero == 0)         res += cntNum(pos + 1, nzero, ntight,                       prime);     }     return dp[pos, st, tight, prime] = res;   }     // Function to find count of numbers in   // range [0, b] whose digits are prime   // at prime and non-prime at non-prime pos   static int cntZeroRange(int b)   {       num.Clear();       // Insert digits of a number, b     while (b > 0) {       num.Add(b % 10);       b /= 10;     }       // Reversing the digits in num     num.Reverse();       // Initializing dp with -1     for (int i = 0; i < 19; i++)       for (int j = 0; j < 2; j++)         for (int k = 0; k < 2; k++)           for (int l = 0; l < 19; l++)             dp[i, j, k, l] = -1;       int res = cntNum(0, 0, 0, 1);       // Returning the value     return res;   }     // Driver Code   public static void Main(string[] args)   {       // Given range, [L, R]     int L = 5, R = 22;       // Function Call     int res = cntZeroRange(R) - cntZeroRange(L - 1);       // Print answer     Console.WriteLine(res + "\n");   } }   // This code is contributed by chitranayal.

## Javascript

 

Output:

7

Time Complexity: O(log10(R) * log10(L) sqrt(log10(R))* 10 * 4))
Auxiliary Space: O(log10(R) * log10(L) * 4)

Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Previous
Next