Finding power of prime number p in n!

Given a number ‘n’ and a prime number ‘p’. We need to find out the power of ‘p’ in prime factorization of n!

Examples:

Input  : n = 4, p = 2
Output : 3
         Power of 2 in prime factorization
         of 2 in 4! = 24 is 3

Input  : n = 24, p = 2
Output : 22



Naive approach
The naive approach is to find the power of p in each number from 1 to n and add them.Because we know that during multiplication power are added.

C/C++

// C++ implementation of finding 
// power of p in n!
#include <bits/stdc++.h>
  
using namespace std;
  
// Returns power of p in n!
int PowerOFPINnfactorial(int n, int p)
{
    // initializing answer
    int ans = 0;
  
    // initializing
    int temp = p;
  
    // loop until temp<=n
    while (temp <= n) {
  
        // add number of numbers divisible by n
        ans += n / temp;
  
        // each time multiply temp by p
        temp = temp * p;
    }
    return ans;
}
  
// Driver function
int main()
{
    cout << PowerOFPINnfactorial(4, 2) << endl;
    return 0;
}

Java

// Java implementation of naive approach
  
public class GFG 
{
    // Method to calculate power of prime number p in n!
    static int PowerOFPINnfactorial(int n, int p)
    {
        // initializing answer
        int ans = 0;
       
        // finding power of p from 1 to n
        for (int i = 1; i <= n; i++) {
       
            // variable to note the power of p in i
            int count = 0, temp = i;
       
            // loop until temp is equal to i
            while (temp % p == 0) {
                count++;
                temp = temp / p;
            }
       
            // adding count to i
            ans += count;
        }
        return ans;
    }
      
    // Driver Method
    public static void main(String[] args)
    {
        System.out.println(PowerOFPINnfactorial(4, 2));
    }
}

Python3

# Pyhton3 implementation of 
# finding power of p in n!
  
# Returns power of p in n!
def PowerOFPINnfactorial(n, p):
  
    # initializing answer
    ans = 0;
  
    # initializing
    temp = p;
  
    # loop until temp<=n
    while (temp <= n):
  
        # add number of numbers 
        # divisible by n
        ans += n / temp;
  
        # each time multiply
        # temp by p
        temp = temp * p;
          
    return ans;
  
# Driver Code
print(PowerOFPINnfactorial(4, 2));
  
# This code is contributed by 
# mits

C#

// C# implementation of naive approach
using System;
  
public class GFG 
{
    // Method to calculate power
    // of prime number p in n!
    static int PowerOFPINnfactorial(int n, int p)
    {
        // initializing answer
        int ans = 0;
      
        // finding power of p from 1 to n
        for (int i = 1; i <= n; i++) {
      
            // variable to note the power of p in i
            int count = 0, temp = i;
      
            // loop until temp is equal to i
            while (temp % p == 0) {
                count++;
                temp = temp / p;
            }
      
            // adding count to i
            ans += count;
        }
        return ans;
    }
      
    // Driver Code
    public static void Main(String []args)
    {
        Console.WriteLine(PowerOFPINnfactorial(4, 2));
    }
}
  
// This code is contributed by vt_m.

PHP

<?php
// PHP implementation of 
// finding power of p in n!
   
// Returns power of p in n!
function PowerOFPINnfactorial($n, $p)
{
    // initializing answer
    $ans = 0;
   
    // initializing
    $temp = $p;
   
    // loop until temp<=n
    while ($temp <= $n
    {
   
        // add number of numbers 
        // divisible by n
        $ans += $n / $temp;
   
        // each time multiply
        // temp by p
        $temp = $temp * $p;
    }
    return $ans;
}
   
// Driver Code
echo PowerOFPINnfactorial(4, 2) . "\n";
   
// This code is contributed by 
// Akanksha Rai(Abby_akku)
?>


Output:

3

Efficient Approach
Before discussing efficient approach lets discuss a question given a two numbers n, m how many numbers are there from 1 to n that are divisible by m the answer is floor(n/m).
Now coming back to our original question to find power of p in n! what we do is count the number of numbers from 1 to n that are divisible by p then by p^2 then by p^3 till p^k > n and add them . This will be our required answer.

   Powerofp(n!) = floor(n/p) + floor(n/p^2) + floor(n/p^3)........ 

Below is implementation of above steps.

C/C++

// C++ implementation of finding power of p in n!
#include <bits/stdc++.h>
  
using namespace std;
  
// Returns power of p in n!
int PowerOFPINnfactorial(int n, int p)
{
    // initializing answer
    int ans = 0;
  
    // initializing
    int temp = p;
  
    // loop until temp<=n
    while (temp <= n) {
  
        // add number of numbers divisible by n
        ans += n / temp;
  
        // each time multiply temp by p
        temp = temp * p;
    }
    return ans;
}
  
// Driver function
int main()
{
    cout << PowerOFPINnfactorial(4, 2) << endl;
    return 0;
}

Java

// Java implementation of finding power of p in n!
  
public class GFG 
{
    // Method to calculate power of prime number p in n!
    static int PowerOFPINnfactorial(int n, int p)
    {
        // initializing answer
        int ans = 0;
       
        // initializing
        int temp = p;
       
        // loop until temp<=n
        while (temp <= n) {
       
            // add number of numbers divisible by n
            ans += n / temp;
       
            // each time multiply temp by p
            temp = temp * p;
        }
        return ans;
    }
      
    // Driver Method
    public static void main(String[] args)
    {
        System.out.println(PowerOFPINnfactorial(4, 2));
    }
}

Python3

# Python3 implementation of
# finding power of p in n!
  
# Returns power of p in n!
def PowerOFPINnfactorial(n, p):
  
    # initializing answer
    ans = 0
  
    # initializing
    temp = p
  
    # loop until temp<=n
    while (temp <= n) :
  
        # add number of numbers 
        # divisible by n
        ans += n / temp
  
        # each time multiply 
        # temp by p
        temp = temp * p
      
    return int(ans)
  
# Driver Code
print(PowerOFPINnfactorial(4, 2))
  
# This code is contributed 
# by Smitha

C#

// C# implementation of finding 
// power of p in n!
using System;
  
public class GFG 
{
  
    // Method to calculate power
    // of prime number p in n!
    static int PowerOFPINnfactorial(int n, int p)
    {
        // initializing answer
        int ans = 0;
      
        // initializing
        int temp = p;
      
        // loop until temp <= n
        while (temp <= n) {
      
            // add number of numbers divisible by n
            ans += n / temp;
      
            // each time multiply temp by p
            temp = temp * p;
        }
        return ans;
    }
      
    // Driver Code
    public static void Main(String []args)
    {
        Console.WriteLine(PowerOFPINnfactorial(4, 2));
    }
}
  
// This code is contributed by vt_m.

PHP

<?php
// PHP implementation of
// finding power of p in n!
  
// Returns power of p in n!
function PowerOFPINnfactorial($n, $p)
{
    // initializing answer
    $ans = 0;
  
    // initializing
    $temp = $p;
  
    // loop until temp<=n
    while ($temp <= $n
    {
  
        // add number of numbers divisible by n
        $ans += $n / $temp;
  
        // each time multiply temp by p
        $temp = $temp * $p;
    }
    return $ans;
}
  
// Driver function
echo PowerOFPINnfactorial(4, 2) . "\n";
  
// This code is contributed
// by Akanksha Rai(Abby_akku)
?>


Output:

3

Time Complexity :O(log_p(n))

This article is contributed by Ayush Jha. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up




Recommended Posts:



3 Average Difficulty : 3/5.0
Based on 2 vote(s)






User Actions