Open In App
Related Articles

Exponential notation of a decimal number

Improve Article
Improve
Save Article
Save
Like Article
Like

Given a positive decimal number, find the simple exponential notation (x = a·10^b) of the given number. Examples:

Input : 100.0
Output : 1E2
Explanation:
The exponential notation of 100.0 is 1E2.

Input :19
Output :1.9E1
Explanation:
The exponential notation of 16 is 1.6E1.

Approach: The simplest way is to find the position of the first non zero digit and the position of the dot. The difference between that positions is the value of b (if the value is positive you should also decrease it by one). Below is the implementation of the above approach: 

C++




// C++ code to find the exponential notation
#include <bits/stdc++.h>
using namespace std;
  
// function to calculate the exponential
// notation
void FindExponent(char s[], int n)
{
    int i, j, b, c;
    for (i = 0; s[i] == '0' || s[i] == '.'; i++)
        ;
    for (j = n - 1; s[j] == '0' || s[j] == '.'; j--)
        ;
  
    c = find(s, s + n, '.') - s;
    putchar(s[i]);
  
    if (i != j)
        putchar('.');
  
    for (int k = i + 1; k <= j; k++)
        if (s[k] != '.')
            putchar(s[k]);
    if (i < c)
        b = c - i - 1;
    else
        b = c - i;
    if (b)
        printf("E%d", b);
}
  
// main function
int main()
{
    char s[] = "100";
    int n = strlen(s);
    FindExponent(s, n);
}


Java




// Java code to find the exponential notation
import java.util.*;
 
class GFG {
 
  // function to calculate the exponential
  // notation
  static void FindExponent(String s, int n)
  {
 
    // Storing the result in an array
 
    int i, j, b, c;
    for (i = 0; s.charAt(i) == '0' || s.charAt(i) == '.'; i++)
      ;
    for (j = n - 1; s.charAt(j) == '0' || s.charAt(j) == '.'; j--)
      ;
 
    // Finding the first index in s which is equal to
    // '.'
    c = s.indexOf('.');
 
    // if '.' not found then put c = n.
    if (c == -1) {
      c = n;
    }
 
    System.out.print(s.charAt(i));
 
    if (i != j) {
      System.out.print('.');
    }
 
    for (int k = i + 1; k <= j; k++) {
      if (s.charAt(k) != '.') {
        System.out.print(s.charAt(k));
      }
    }
 
    if (i < c) {
      b = c - i - 1;
    }
    else {
      b = c - i;
    }
 
    if (b > 0) {
      System.out.print("E");
      System.out.print(b);
    }
  }
 
  // main function
  public static void main(String[] args)
  {
    String s = "100";
    int n = s.length();
    FindExponent(s, n);
  }
}
 
// The code is contributed by phasing17


Python3




# Python3 code to find the exponential notation
  
# function to calculate the exponential
# notation
def FindExponent(s, n):
    # Storing the result in an array
    res = []
    i = 0
    while (s[i] in '.0'):
        i += 1
     
    j = n - 1
    while (s[j] in '.0' ):
        j -= 1
         
    # Finding the first index in s which is equal to '.'
    if '.' in s:
        c = s.index('.')
    # if '.' not found then put c = n.
    else:
        c = n
 
    res.append(s[i]);
      
    if (i != j):
        res.append('.');
          
    for k in range(i + 1, 1 + j):
        if (s[k] != '.'):
            res.append(s[k]);
  
    if (i < c):
        b = c - i - 1;
     
    else:
        b = c - i;
     
      
    if (b != 0):
        res.append("E");
        res.append(str(b));
     
    print("".join(res))
 
# main function
s = "100";
n = len(s)
FindExponent(list(s), n);
 
# The code is contributed by phasing17


C#




// C# code to find the exponential notation
using System;
using System.Collections.Generic;
 
class GFG
{
 
  // function to calculate the exponential
  // notation
  static void FindExponent(string s, int n)
  {
 
    // Storing the result in an array
 
    int i, j, b, c;
    for (i = 0; s[i] == '0' || s[i] == '.'; i++);
    for (j = n - 1; s[j] == '0' || s[j] == '.'; j--);
 
    // Finding the first index in s which is equal to '.'
    c = s.IndexOf('.');
 
    // if '.' not found then put c = n.
    if(c == -1){
      c = n;
    }
 
    Console.Write(s[i]);
 
    if (i != j){
      Console.Write('.');
    }
 
    for (int k = i + 1; k <= j; k++){
      if (s[k] != '.'){
        Console.Write(s[k]);
      }
    }
 
    if (i < c){
      b = c - i - 1;
    }    
    else{
      b = c - i;
    }
 
    if (b > 0){
      Console.Write("E");
      Console.Write(b);
    }
  }
 
  // main function
  public static void Main(string[] args)
  {
    string s = "100";
    int n = s.Length;
    FindExponent(s, n);
  }
}
 
// The code is contributed by phasing17


Javascript




// JavaScript code to find the exponential notation
  
// function to calculate the exponential
// notation
function FindExponent(s, n){
    // Storing the result in an array
    const res = new Array();
      
    let i, j, b, c;
    for (i = 0; s[i] == '0' || s[i] == '.'; i++);
    for (j = n - 1; s[j] == '0' || s[j] == '.'; j--);
      
    // Finding the first index in s which is equal to '.'
    c = s.findIndex(function (element) {
        return element == '.';
    });
  
    // if '.' not found then put c = n.
    if(c == -1){
        c = n;
    }
      
    res.push(s[i]);
      
    if (i != j){
        res.push('.');
    }
          
    for (let k = i + 1; k <= j; k++){
        if (s[k] != '.'){
            res.push(s[k]);
        }
    }
  
    if (i < c){
        b = c - i - 1;
    }    
    else{
       b = c - i;
    }
      
    if (b){
        res.push("E");
        res.push(b);
    }
    console.log(res.join(''));
}
  
// main function
{
    let s = "100";
    let n = s.length;
    FindExponent(s.split(''), n);
}
  
// The code is contributed by Gautam goel (gautamgoel962)


Output:

1E2

Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 28 Jul, 2022
Like Article
Save Article
Similar Reads
Related Tutorials