Exponential Squaring (Fast Modulo Multiplication)
Given two numbers base and exp, we need to compute baseexp under Modulo 10^9+7
Examples:
Input : base = 2, exp = 2 Output : 4 Input : base = 5, exp = 100000 Output : 754573817
In competitions, for calculating large powers of a number we are given a modulus value(a large prime number) because as the values of is being calculated it can get very large so instead we have to calculate (
%modulus value.)
We can use the modulus in our naive way by using modulus on all the intermediate steps and take modulus at the end,
but in competitions it will definitely show TLE. So, what we can do.
The answer is we can try exponentiation by squaring which is a fast method for calculating exponentiation of a number.
Here we will be discussing two most common/important methods:
- Basic Method(Binary Exponentiation)
-ary method.
Binary Exponentiation
As described in this article we will be using following formula to recursively calculate (%modulus value):
C++
// C++ program to compute exponential // value under modulo using binary // exponentiation. #include<iostream> using namespace std; #define N 1000000007 // prime modulo value long int exponentiation( long int base, long int exp ) { if ( exp == 0) return 1; if ( exp == 1) return base % N; long int t = exponentiation(base, exp / 2); t = (t * t) % N; // if exponent is even value if ( exp % 2 == 0) return t; // if exponent is odd value else return ((base % N) * t) % N; } // Driver Code int main() { long int base = 5; long int exp = 100000; long int modulo = exponentiation(base, exp ); cout << modulo << endl; return 0; } // This Code is contributed by mits |
Java
// Java program to compute exponential value under modulo // using binary exponentiation. import java.util.*; import java.lang.*; import java.io.*; class exp_sq { static long N = 1000000007L; // prime modulo value public static void main(String[] args) { long base = 5 ; long exp = 100000 ; long modulo = exponentiation(base, exp); System.out.println(modulo); } static long exponentiation( long base, long exp) { if (exp == 0 ) return 1 ; if (exp == 1 ) return base % N; long t = exponentiation(base, exp / 2 ); t = (t * t) % N; // if exponent is even value if (exp % 2 == 0 ) return t; // if exponent is odd value else return ((base % N) * t) % N; } } |
Python3
# Python3 program to compute # exponential value under # modulo using binary # exponentiation. # prime modulo value N = 1000000007 ; # Function code def exponentiation(bas, exp): if (exp = = 0 ): return 1 ; if (exp = = 1 ): return bas % N; t = exponentiation(bas, int (exp / 2 )); t = (t * t) % N; # if exponent is # even value if (exp % 2 = = 0 ): return t; # if exponent is # odd value else : return ((bas % N) * t) % N; # Driver code bas = 5 ; exp = 100000 ; modulo = exponentiation(bas, exp); print (modulo); # This code is contributed # by mits |
C#
// C# program to compute exponential // value under modulo using binary // exponentiation. using System; class GFG { // prime modulo value static long N = 1000000007L; // Driver code public static void Main() { long bas = 5; long exp = 100000; long modulo = exponentiation(bas, exp); Console.Write(modulo); } static long exponentiation( long bas, long exp) { if (exp == 0) return 1; if (exp == 1) return bas % N; long t = exponentiation(bas, exp / 2); t = (t * t) % N; // if exponent is even value if (exp % 2 == 0) return t; // if exponent is odd value else return ((bas % N) * t) % N; } } // This code is contributed by nitin mittal. |
PHP
<?php // PHP program to compute exponential // value under modulo using binary // exponentiation. // prime modulo value $N = 1000000007; // Function code function exponentiation( $bas , $exp ) { global $N ; if ( $exp == 0) return 1; if ( $exp == 1) return $bas % $N ; $t = exponentiation( $bas , $exp / 2); $t = ( $t * $t ) % $N ; // if exponent is // even value if ( $exp % 2 == 0) return $t ; // if exponent is // odd value else return (( $bas % $N ) * $t ) % $N ; } // Driver code $bas = 5; $exp = 100000; $modulo = exponentiation( $bas , $exp ); echo ( $modulo ); // This code is contributed by ajit ?> |
Output :
754573817
-ary method:
In this algorithm we will be expanding the exponent in base (k>=1), which is somehow similar to above method except we are not using recursion this method uses comparatively less memory and time.
Java
// Java program to compute exponential value using (2^k) // -ary method. import java.util.*; import java.lang.*; import java.io.*; class exp_sq { static long N = 1000000007L; // prime modulo value public static void main(String[] args) { long base = 5 ; long exp = 100000 ; long modulo = exponentiation(base, exp); System.out.println(modulo); } static long exponentiation( long base, long exp) { long t = 1L; while (exp > 0 ) { // for cases where exponent // is not an even value if (exp % 2 != 0 ) t = (t * base) % N; base = (base * base) % N; exp /= 2 ; } return t % N; } } |
Python3
# Python3 program to compute # exponential value # using (2^k) -ary method. # prime modulo value N = 1000000007 ; def exponentiation(bas, exp): t = 1 ; while (exp > 0 ): # for cases where exponent # is not an even value if (exp % 2 ! = 0 ): t = (t * bas) % N; bas = (bas * bas) % N; exp = int (exp / 2 ); return t % N; # Driver Code bas = 5 ; exp = 100000 ; modulo = exponentiation(bas,exp); print (modulo); # This code is contributed # by mits |
C#
// C# program to compute // exponential value // using (2^k) -ary method. using System; class GFG { // prime modulo value static long N = 1000000007L; static long exponentiation( long bas, long exp) { long t = 1L; while (exp > 0) { // for cases where exponent // is not an even value if (exp % 2 != 0) t = (t * bas) % N; bas = (bas * bas) % N; exp /= 2; } return t % N; } // Driver Code public static void Main () { long bas = 5; long exp = 100000; long modulo = exponentiation(bas, exp); Console.WriteLine(modulo); } } //This code is contributed by ajit |
PHP
<?php // PHP program to compute // exponential value // using (2^k) -ary method. // prime modulo value $N = 1000000007; function exponentiation( $bas , $exp ) { global $N ; $t = 1; while ( $exp > 0) { // for cases where exponent // is not an even value if ( $exp % 2 != 0) $t = ( $t * $bas ) % $N ; $bas = ( $bas * $bas ) % $N ; $exp = (int) $exp / 2; } return $t % $N ; } // Driver Code $bas = 5; $exp = 100000; $modulo = exponentiation( $bas , $exp ); echo ( $modulo ); // This code is contributed // by ajit ?> |
Output :
754573817
Applications:
Besides fast calculation of this method have several other advantages, like it is used in cryptography, in calculating Matrix Exponentiation et cetera.
Recommended Posts:
- Fast Fourier Transformation for poynomial multiplication
- Find the larger exponential among two exponentials
- Exponential notation of a decimal number
- You don’t need to type fast to be a developer
- Fast inverse square root
- How does Floyd's slow and fast pointers approach work?
- Few Tips for Fast & Productive Work on a Linux Terminal
- Fast method to calculate inverse square root of a floating point number in IEEE 754 format
- LCM of N numbers modulo M
- Compute n! under modulo p
- Fibonacci modulo p
- Sum of two numbers modulo M
- Modulo 10^9+7 (1000000007)
- Sort elements by modulo with K
- Maximum subarray sum modulo m
If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.