Euler’s Four Square Identity

According to Euler’s four square identity, the product of any two numbers a and b can be expressed as a sum of four squares if a and b both can individually be expressed as sum of four squares.

Mathematically, if a = c1^2 + c2^2 + c3^2 + c4^2 and b = d1^2 + d2^2 + d3^2 + d4^2
Then, a * b = e1^2 + e2^2 + e3^2 + e4^2
where c1, c2, c3, c4, d1, d2, d3, d4, e1, e2, e3, e4 are any integer.

Some examples are,

  a = 1^2 + 2^2 + 3^2 + 4^2 = 30
  b = 1^2 + 1^2 + 1^2 + 1^2 = 4
  ab = a * b = 120 = 2^2 + 4^2 + 6^2 + 8^2

  a = 1^2 + 2^2 + 3^2 + 1^2 = 15
  b = 2^2 + 3^2 + 4^2 + 5^2 = 24
  ab = a * b = 810 = 1^2 + 4^2 + 8^2 + 27^2

  a = 1^2 + 2^2 + 3^2 + 1^2 = 15
  b = 2^2 + 3^2 + 2^2 + 3^2 = 26
  ab = a * b = 390 = 4^2 + 7^2 + 10^2 + 15^2

Example:

Input: a = 1 * 1 + 2 * 2 + 3 * 3 + 4 * 4
            b = 1 * 1 + 1 * 1 + 1 * 1 + 1 * 1
  
Output: i = 0
j = 2
k = 4
l = 10
Product of 30 and 4 can be written as sum of squares of i, j, k, l
120 = 0 * 0 + 2 * 2 + 4 * 4 + 10 * 10

i = 2
j = 4
k = 6
l = 8
Product of 30 and 4 can be written as sum of squares of i, j, k, l
120 = 2 * 2 + 4 * 4 + 6 * 6 + 8 * 8

Explanation :
The product of the 2 numbers a(30) and b(4) can be represented as sum of 4 squares as stated by euler’s four square identity. The above are the 2 representations of the product a * b in sum of 4 squares form. All possible representation of the product a*b in sum of four squares form are shown.

Input: a = 1*1 + 2*2 + 3*3 + 1*1
       b = 1*1 + 2*2 + 1*1 + 1*1

Output: i = 0
j = 1
k = 2
l = 10
Product of 15 and 7 can be written as sum of squares of i, j, k, l
105 = 0*0 + 1*1 + 2*2 + 10*10

i = 0
j = 4
k = 5
l = 8
Product of 15 and 7 can be written as sum of squares of i, j, k, l
105 = 0*0 + 4*4 + 5*5 + 8*8

i = 1
j = 2
k = 6
l = 8
Product of 15 and 7 can be written as sum of squares of i, j, k, l
105 = 1*1 + 2*2 + 6*6 + 8*8

i = 2
j = 2
k = 4
l = 9
Product of 15 and 7 can be written as sum of squares of i, j, k, l
105 = 2*2 + 2*2 + 4*4 + 9*9

i = 2
j = 4
k = 6
l = 7
Product of 15 and 7 can be written as sum of squares of i, j, k, l
105 = 2*2 + 4*4 + 6*6 + 7*7

i = 3
j = 4
k = 4
l = 8
Product of 15 and 7 can be written as sum of squares of i, j, k, l
105 = 3*3 + 4*4 + 4*4 + 8*8

Approach :



Brute Force :
A given number(a*b) can be represented in sum of 4 squares form by using 4 loops i, j, k, l to find each of the four squares. This gives all possible combinations to form a*b as a sum of four squares. At each iteration of the innermost loop(l loop), check the sum with the product a*b. If there is a match, then print the 4 numbers(i, j, k and l) whose sum of squares equals a*b.

C++

// CPP code to verify euler's four square identity
#include <bits/stdc++.h>
  
using namespace std;
  
#define show(x) cout << #x << " = " << x << "\n";
  
// function to check euler four square identity
void check_euler_four_square_identity(int a, int b,
                                      int ab)
{
    int s = 0;
      
    // loops checking the sum of squares
    for (int i = 0;i * i <= ab;i ++)
    {
        s = i * i;
        for (int j = i;j * j <= ab;j ++)
        {
            // sum of 2 squares
            s = j * j + i * i;
              
            for (int k = j;k * k <= ab;k ++)
            {
                // sum of 3 squares
                s = k * k + j * j + i * i;
                  
                for (int l = k;l * l <= ab;l ++)
                {
                    // sum of 4 squares
                    s = l * l + k * k + j * j + i * i;
  
                    // product of 2 numbers represented
                    // as sum of four squares i, j, k, l 
                    if (s == ab)
                    {
                        // product of 2 numbers a and b
                        // represented as sum of four 
                        // squares i, j, k, l 
                        show(i);
                        show(j);
                        show(k);
                        show(l);
                        cout <<"" 
                        << "Product of " << a
                        << " and " << b;
                        cout << " can be written"<<
                        " as sum of squares of i, "<<
                         "j, k, l\n";
                        cout << ab << " = ";
                        cout << i << "*" << i << " + ";
                        cout << j << "*" << j << " + ";
                        cout << k << "*" << k << " + ";
                        cout << l << "*" << l << "\n";
                        cout << "\n";
                    }
                }
            }
        }
    }
}
  
// Driver code
int main() 
{
    // a and b such that they can be expressed 
    // as sum of squares of numbers
    int a = 30; // 1*1 + 2*2 + 3*3 + 4*4;
    int b = 4;  // 1*1 + 1*1 + 1*1 + 1*1;
  
    // given numbers can be represented as
    // sum of 4 squares By euler's four
    // square identity product also can be 
    // represented as sum of 4 squares
    int ab = a * b;
      
    check_euler_four_square_identity(a, b, ab);
      
    return 0;
}

Java

// Java code to verify euler's 
// four square identity
import java.io.*;
  
class GFG 
{
      
// function to check euler
// four square identity
static void check_euler_four_square_identity(int a, 
                                             int b,
                                             int ab)
{
    int s = 0;
      
    // loops checking the
    // sum of squares
    for (int i = 0
             i * i <= ab; i ++)
    {
        s = i * i;
        for (int j = i; 
                 j * j <= ab; j ++)
        {
            // sum of 2 squares
            s = j * j + i * i;
              
            for (int k = j;
                     k * k <= ab; k ++)
            {
                // sum of 3 squares
                s = k * k + j * 
                    j + i * i;
                  
                for (int l = k; 
                         l * l <= ab; l ++)
                {
                    // sum of 4 squares
                    s = l * l + k * k +
                        j * j + i * i;
  
                    // product of 2 numbers 
                    // represented as sum of
                    // four squares i, j, k, l 
                    if (s == ab)
                    {
                        // product of 2 numbers 
                        // a and b represented 
                        // as sum of four squares
                        // i, j, k, l 
                        System.out.print("i = "
                                          i + "\n");
                        System.out.print("j = "
                                          j + "\n");
                        System.out.print("k = "
                                          k + "\n");
                        System.out.print("l = "
                                          l + "\n");
                        System.out.print("Product of "
                                         a + " and " + b);
                        System.out.print(" can be written"+
                               " as sum of squares of i, "+
                                              "j, k, l\n");
                        System.out.print(ab + " = ");
                        System.out.print(i + "*" +
                                         i + " + ");
                        System.out.print(j + "*" +
                                         j + " + ");
                        System.out.print(k + "*" +
                                         k + " + ");
                        System.out.print(l + "*"
                                         l + "\n");
                        System.out.println();
                    }
                }
            }
        }
    }
}
  
// Driver code
public static void main (String[] args)
{
    // a and b such that 
    // they can be expressed 
    // as sum of squares 
    // of numbers
    int a = 30; // 1*1 + 2*2 + 
                // 3*3 + 4*4;
    int b = 4// 1*1 + 1*1 + 
                // 1*1 + 1*1;
  
    // given numbers can be 
    // represented as sum of 
    // 4 squares By euler's 
    // four square identity 
    // product also can be 
    // represented as sum 
    // of 4 squares
    int ab = a * b;
      
    check_euler_four_square_identity(a, b, ab);
}
}
  
// This code is contributed by ajit

C#

// C# code to verify euler's 
// four square identity
using System;
  
class GFG
{
    // function to check euler
    // four square identity
    static void check_euler_four_square_identity(int a, 
                                                 int b,
                                                 int ab)
    {
        int s = 0;
          
        // loops checking the
        // sum of squares
        for (int i = 0; i * i <= ab; i ++)
        {
            s = i * i;
            for (int j = i; j * j <= ab; j ++)
            {
                // sum of 2 squares
                s = j * j + i * i;
                  
                for (int k = j; k * k <= ab; k ++)
                {
                    // sum of 3 squares
                    s = k * k + j * 
                        j + i * i;
                      
                    for (int l = k; l * l <= ab; l ++)
                    {
                        // sum of 4 squares
                        s = l * l + k * k +
                            j * j + i * i;
      
                        // product of 2 numbers 
                        // represented as sum of
                        // four squares i, j, k, l 
                        if (s == ab)
                        {
                            // product of 2 numbers a 
                            // and b represented as  
                            // sum of four squares i, j, k, l 
                            Console.Write("i = " + i + "\n");
                            Console.Write("j = " + j + "\n");
                            Console.Write("k = " + k + "\n");
                            Console.Write("l = " + l + "\n");
                            Console.Write("Product of " + a + 
                                                " and " + b);
                            Console.Write(" can be written"+
                                " as sum of squares of i, "+
                                               "j, k, l\n");
                            Console.Write(ab + " = ");
                            Console.Write(i + "*" + i + " + ");
                            Console.Write(j + "*" + j + " + ");
                            Console.Write(k + "*" + k + " + ");
                            Console.Write(l + "*" + l + "\n");
                            Console.Write("\n");
                        }
                    }
                }
            }
        }
    }
      
    // Driver code
    static void Main()
    {
        // a and b such that 
        // they can be expressed 
        // as sum of squares of numbers
        int a = 30; // 1*1 + 2*2 + 3*3 + 4*4;
        int b = 4; // 1*1 + 1*1 + 1*1 + 1*1;
      
        // given numbers can be 
        // represented as sum of 
        // 4 squares By euler's 
        // four square identity 
        // product also can be 
        // represented as sum 
        // of 4 squares
        int ab = a * b;
          
        check_euler_four_square_identity(a, b, ab);
    }
}
  
// This code is contributed by 
// Manish Shaw(manishshaw1)

PHP

Output:

i = 0
j = 2
k = 4
l = 10
Product of 30 and 4 can be written as sum of squares of i, j, k, l
120 = 0*0 + 2*2 + 4*4 + 10*10

i = 2
j = 4
k = 6
l = 8
Product of 30 and 4 can be written as sum of squares of i, j, k, l
120 = 2*2 + 4*4 + 6*6 + 8*8

Improved Algorithm:

The time complexity of the above algorithm is O((a*b)^4) in the worst case. This can be reduced to O((a*b)^3) by subtracting the squares of i,j and k from the product a*b for all (i,j,k) and checking if that value is a perfect square or not. If it is a perfect square, then we have found the solution.

# Python3 code to verify Euler's four-square identity
# This function prints the four numbers if a solution is found
# Else prints solution doesn't exist
def checkEulerFourSquareIdentity(a, b):
  
    # Number for which we want to find a solution
    ab = a*b
    flag = False
      
    i = 0
    while i*i <= ab: # loop for first number
          
        j = i
        while i*i + j*j <= ab: # loop for second number
          
            k = j
            while i*i + j*j + k*k <= ab: # loop for third number
                  
                # Calculate the fourth number and apply square root
                l = (ab - (i*i + j*j + k*k))**(0.5)
                  
                # Check if the fourthNum is Integer or not
                # If yes, then solution is found
                if l == int(l) and l >= k:
                    flag = True
                    print("i = ",i)
                    print("j = ",j)
                    print("k = ",k)
                    print("l = ",l)
                    print("Product of", a , "and" , b , 
                          "can be written as sum of squares of i, j, k, l"
                    print(ab," = ",i,"*",i,"+",j,"*",j,"+",
                          k,"*",k,"+",l,"*",l)
                      
                      
                k += 1
              
            j += 1
          
        i += 1
          
    # Solution cannot be found
    if flag == False:
        print("Solution doesn't exist!")
        return
  
a, b = 30, 4
checkEulerFourSquareIdentity(a,b)

Output:

 
i = 0
j = 2
k = 4
l = 10
Product of 30 and 4 can be written as sum of squares of i, j, k, l
120 = 0*0 + 2*2 + 4*4 + 10*10
i = 2
j = 4
k = 6
l = 8
Product of 30 and 4 can be written as sum of squares of i, j, k, l
120 = 2*2 + 4*4 + 6*6 + 8*8


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.