# Check if a large number is divisible by 11 or not

Given a number, the task is to check if the number is divisible by 11 or not. The input number may be large and it may not be possible to store it even if we use long long int.

Examples:

Input : n = 76945 Output : Yes Input : n = 1234567589333892 Output : Yes Input : n = 363588395960667043875487 Output : No

Since input number may be very large, we cannot use n % 11 to check if a number is divisible by 11 or not, especially in languages like C/C++. The idea is based on following fact.

A number is divisible by 11 if **difference of following two** is divisible by 11.

- Sum of digits at odd places.
- Sum of digits at even places.

**Illustration:**

For example, let us consider 76945 Sum of digits at odd places : 7 + 9 + 5 Sum of digits at even places : 6 + 4 Difference of two sums = 21 - 10 = 11 Since difference is divisible by 11, the number 7945 is divisible by 11.

**How does this work?**

Let us consider 7694, we can write it as 7694 = 7*1000 + 6*100 + 9*10 + 4 The proof is based on below observation: Remainder of 10^{i}divided by 11 is 1 if i isevenRemainder of 10^{i}divided by 11 is -1 if i isoddSo the powers of 10 only result in values either 1 or -1. Remainder of "7*1000 + 6*100 + 9*10 + 4" divided by 11 can be written as : 7*(-1) + 6*1 + 9*(-1) + 4*1 The above expression is basically difference between sum of even digits and odd digits.

Below is the implementation of above approach:

## C++

`// C++ program to find if a number is divisible by` `// 11 or not` `#include<bits/stdc++.h>` `using` `namespace` `std;` `// Function to find that number divisible by 11 or not` `int` `check(string str)` `{` ` ` `int` `n = str.length();` ` ` `// Compute sum of even and odd digit` ` ` `// sums` ` ` `int` `oddDigSum = 0, evenDigSum = 0;` ` ` `for` `(` `int` `i=0; i<n; i++)` ` ` `{` ` ` `// When i is even, position of digit is odd` ` ` `if` `(i%2 == 0)` ` ` `oddDigSum += (str[i]-` `'0'` `);` ` ` `else` ` ` `evenDigSum += (str[i]-` `'0'` `);` ` ` `}` ` ` `// Check its difference is divisible by 11 or not` ` ` `return` `((oddDigSum - evenDigSum) % 11 == 0);` `}` `// Driver code` `int` `main()` `{` ` ` `string str = ` `"76945"` `;` ` ` `check(str)? cout << ` `"Yes"` `: cout << ` `"No "` `;` ` ` `return` `0;` `}` |

## Java

`// Java program to find if a number is` `// divisible by 11 or not` `class` `IsDivisible` `{` ` ` `// Function to find that number divisible by 11 or not` ` ` `static` `boolean` `check(String str)` ` ` `{` ` ` `int` `n = str.length();` ` ` ` ` `// Compute sum of even and odd digit` ` ` `// sums` ` ` `int` `oddDigSum = ` `0` `, evenDigSum = ` `0` `;` ` ` `for` `(` `int` `i=` `0` `; i<n; i++)` ` ` `{` ` ` `// When i is even, position of digit is odd` ` ` `if` `(i%` `2` `== ` `0` `)` ` ` `oddDigSum += (str.charAt(i)-` `'0'` `);` ` ` `else` ` ` `evenDigSum += (str.charAt(i)-` `'0'` `);` ` ` `}` ` ` ` ` `// Check its difference is divisible by 11 or not` ` ` `return` `((oddDigSum - evenDigSum) % ` `11` `== ` `0` `);` ` ` `}` ` ` ` ` `// main function` ` ` `public` `static` `void` `main (String[] args)` ` ` `{` ` ` `String str = ` `"76945"` `;` ` ` `if` `(check(str))` ` ` `System.out.println(` `"Yes"` `);` ` ` `else` ` ` `System.out.println(` `"No"` `);` ` ` `}` `}` |

## Python3

`# Python 3 code program to find if a number` `# is divisible by 11 or not` `# Function to find that number divisible by` `# 11 or not` `def` `check(st) :` ` ` `n ` `=` `len` `(st)` ` ` `# Compute sum of even and odd digit` ` ` `# sums` ` ` `oddDigSum ` `=` `0` ` ` `evenDigSum ` `=` `0` ` ` `for` `i ` `in` `range` `(` `0` `,n) :` ` ` `# When i is even, position of digit is odd` ` ` `if` `(i ` `%` `2` `=` `=` `0` `) :` ` ` `oddDigSum ` `=` `oddDigSum ` `+` `((` `int` `)(st[i]))` ` ` `else` `:` ` ` `evenDigSum ` `=` `evenDigSum ` `+` `((` `int` `)(st[i]))` ` ` ` ` ` ` `# Check its difference is divisible by 11 or not` ` ` `return` `((oddDigSum ` `-` `evenDigSum) ` `%` `11` `=` `=` `0` `)` `# Driver code` `st ` `=` `"76945"` `if` `(check(st)) :` ` ` `print` `( ` `"Yes"` `)` `else` `:` ` ` `print` `(` `"No "` `)` ` ` `# This code is contributed by Nikita tiwari.` |

## C#

`// C# program to find if a number is` `// divisible by 11 or not` `using` `System;` `class` `GFG` `{` ` ` `// Function to find that number` ` ` `// divisible by 11 or not` ` ` `static` `bool` `check(` `string` `str)` ` ` `{` ` ` `int` `n = str.Length;` ` ` ` ` `// Compute sum of even and odd digit` ` ` `// sums` ` ` `int` `oddDigSum = 0, evenDigSum = 0;` ` ` ` ` `for` `(` `int` `i = 0; i < n; i++)` ` ` `{` ` ` `// When i is even, position of` ` ` `// digit is odd` ` ` `if` `(i % 2 == 0)` ` ` `oddDigSum += (str[i] - ` `'0'` `);` ` ` `else` ` ` `evenDigSum += (str[i] - ` `'0'` `);` ` ` `}` ` ` ` ` `// Check its difference is` ` ` `// divisible by 11 or not` ` ` `return` `((oddDigSum - evenDigSum)` ` ` `% 11 == 0);` ` ` `}` ` ` ` ` `// main function` ` ` `public` `static` `void` `Main ()` ` ` `{` ` ` `String str = ` `"76945"` `;` ` ` ` ` `if` `(check(str))` ` ` `Console.WriteLine(` `"Yes"` `);` ` ` `else` ` ` `Console.WriteLine(` `"No"` `);` ` ` `}` `}` `// This code is contributed by vt_m.` |

## PHP

`<?php` `// PHP program to find if a` `// number is divisible by` `// 11 or not` `// Function to find that number` `// divisible by 11 or not` `function` `check(` `$str` `)` `{` ` ` `$n` `= ` `strlen` `(` `$str` `);` ` ` `// Compute sum of even` ` ` `// and odd digit sums` ` ` `$oddDigSum` `= 0; ` `$evenDigSum` `= 0;` ` ` `for` `(` `$i` `= 0; ` `$i` `< ` `$n` `; ` `$i` `++)` ` ` `{` ` ` ` ` `// When i is even, position` ` ` `// of digit is odd` ` ` `if` `(` `$i` `% 2 == 0)` ` ` `$oddDigSum` `+= (` `$str` `[` `$i` `] - ` `'0'` `);` ` ` `else` ` ` `$evenDigSum` `+= (` `$str` `[` `$i` `] - ` `'0'` `);` ` ` `}` ` ` `// Check its difference` ` ` `// is divisible by 11 or not` ` ` `return` `((` `$oddDigSum` `- ` `$evenDigSum` `)` ` ` `% 11 == 0);` `}` `// Driver code` `$str` `= ` `"76945"` `;` `$x` `= check(` `$str` `)? ` `"Yes"` `: ` `"No "` `;` `echo` `(` `$x` `);` `// This code is contributed by Ajit.` `?>` |

## Javascript

`<script>` `// JavaScript program for the above approach` ` ` `// Function to find that number` ` ` `// divisible by 11 or not` ` ` `function` `check(str)` ` ` `{` ` ` `let n = str.length;` ` ` ` ` `// Compute sum of even and odd digit` ` ` `// sums` ` ` `let oddDigSum = 0, evenDigSum = 0;` ` ` ` ` `for` `(let i = 0; i < n; i++)` ` ` `{` ` ` ` ` `// When i is even, position of` ` ` `// digit is odd` ` ` `if` `(i % 2 == 0)` ` ` `oddDigSum += (str[i] - ` `'0'` `);` ` ` `else` ` ` `evenDigSum += (str[i] - ` `'0'` `);` ` ` `}` ` ` ` ` `// Check its difference is` ` ` `// divisible by 11 or not` ` ` `return` `((oddDigSum - evenDigSum)` ` ` `% 11 == 0);` ` ` `}` ` ` `// Driver Code` ` ` `let str = ` `"76945"` `;` ` ` `if` `(check(str))` ` ` `document.write(` `"Yes"` `);` ` ` `else` ` ` `document.write(` `"No"` `);` ` ` `// This code is contributed by chinmoy1997pal.` `</script>` |

**Output**

Yes

**Time Complexity**: O(n), where n is the given number.

**Auxiliary Space**: O(1), as we are not using any extra space.

**Method:** Checking given number is divisible by 11 or not by using the modulo division operator “%”.

## C++

`// C++ code to check whether` `// the given number is divisible by 11 or not` `#include <bits/stdc++.h>` `using` `namespace` `std;` `int` `main()` `{` ` ` ` ` `// input` ` ` `long` `long` `n = 1234567589333892;` ` ` `// the above input can also be given as n=input() ->` ` ` `// taking input from user finding given number is` ` ` `// divisible by 11 or not` ` ` `if` `(n % 11 == 0)` ` ` `cout << ` `"Yes"` `<< endl;` ` ` `else` ` ` `cout << ` `"No"` `<< endl;` `}` `// This code is contributed by phasing17` |

## Java

`// Java code to check whether` `// the given number is divisible by 11 or not` `import` `java.util.*;` `class` `GFG {` ` ` `public` `static` `void` `main(String[] args)` ` ` `{` ` ` `// input` ` ` `Long n = Long.parseUnsignedLong(` `"1234567589333892"` `);` ` ` `// the above input can also be given as n=input() ->` ` ` `// taking input from user finding given number is` ` ` `// divisible by 11 or not` ` ` `if` `(n % ` `11` `== ` `0` `)` ` ` `System.out.println(` `"Yes"` `);` ` ` `else` ` ` `System.out.println(` `"No"` `);` ` ` `}` `}` `// This code is contributed by phasing17` |

## Python3

`# Python code` `# To check whether the given number is divisible by 11 or not` `#input` `n` `=` `1234567589333892` `# the above input can also be given as n=input() -> taking input from user` `# finding given number is divisible by 11 or not` `if` `int` `(n)` `%` `11` `=` `=` `0` `:` ` ` `print` `(` `"Yes"` `)` `else` `:` ` ` `print` `(` `"No"` `)` ` ` `# this code is contributed by gangarajula laxmi` |

## C#

`// C# code to check whether` `// the given number is divisible by 11 or not` `using` `System;` `class` `GFG {` ` ` `public` `static` `void` `Main(` `string` `[] args)` ` ` `{` ` ` `// input` ` ` `long` `n = 1234567589333892;` ` ` `// the above input can also be given as n=input() ->` ` ` `// taking input from user finding given number is` ` ` `// divisible by 11 or not` ` ` `if` `(n % 11 == 0)` ` ` `Console.WriteLine(` `"Yes"` `);` ` ` `else` ` ` `Console.WriteLine(` `"No"` `);` ` ` `}` `}` `// This code is contributed by phasing17` |

## Javascript

`// JavaScript code to check whether` `// the given number is divisible by 11 or not` `// input` `let n = 1234567589333892` `// the above input can also be given as n=input() -> taking input from user` `// finding given number is divisible by 11 or not` `if` `(n % 11 == 0)` ` ` `console.log(` `"Yes"` `)` `else` ` ` `console.log(` `"No"` `)` `// this code is contributed by phasing17` |

**Output**

Yes

**Time Complexity**: O(1) because it is performing constant operations

**Auxiliary Space**: O(1)

**Method:** Checking given number is divisible by 11 or not using modulo division.

## C++

`// C++ program to check if given number is divisible by 11` `// or not using modulo division` `#include <iostream>` `using` `namespace` `std;` `int` `main()` `{` ` ` `// input number` ` ` `int` `num = 76945;` ` ` `// checking if the given number is divisible by 11 or` ` ` `// not using modulo division operator if the output of` ` ` `// num%11 is equal to 0 then given number is divisible` ` ` `// by 11 otherwise not divisible by 11` ` ` `if` `(num % 11 == 0) {` ` ` `cout << ` `" divisible"` `;` ` ` `}` ` ` `else` `{` ` ` `cout << ` `" not divisible"` `;` ` ` `}` ` ` `return` `0;` `}` `// this code is contributed by gangarajula laxmi` |

## Java

`// java program to check if given number is divisible by 11` `// or not using modulo division` `import` `java.io.*;` `class` `GFG {` ` ` `public` `static` `void` `main(String[] args)` ` ` `{` ` ` `// input number` ` ` `int` `num = ` `76945` `;` ` ` `// checking if the given number is divisible by 11` ` ` `// or not` ` ` `// using modulo division operator if the output of` ` ` `// num%11 is equal to 0 then given number is` ` ` `// divisible by 11 otherwise not divisible by 11` ` ` `if` `(num % ` `11` `== ` `0` `) {` ` ` `System.out.println(` `" divisible"` `);` ` ` `}` ` ` `else` `{` ` ` `System.out.println(` `" not divisible"` `);` ` ` `}` ` ` `}` `}` `// this code is contributed by gangarajula laxmi` |

## Python3

`# Python3 code for the above approach` `# To check whether the given number is divisible by 11 or not` `# input` `n ` `=` `76945` ` ` `# finding given number is divisible by 11 or not` `if` `(n ` `%` `11` `=` `=` `0` `):` ` ` `print` `(` `"Yes"` `)` `else` `:` ` ` `print` `(` `"No"` `)` `# This code is contributed by phasing17` |

## C#

`using` `System;` `public` `class` `GFG {` ` ` `static` `public` `void` `Main()` ` ` `{` ` ` `// input number` ` ` `double` `num = 76945;` ` ` ` ` `// checking if the given number is divisible by 11` ` ` `// or not using modulo division operator if the` ` ` `// output of num%11 is equal to 0 then given number` ` ` `// is divisible by 11 otherwise not divisible by 11` ` ` `if` `(num % 11 == 0) {` ` ` `Console.Write(` `" divisible"` `);` ` ` `}` ` ` `else` `{` ` ` `Console.Write(` `" not divisible"` `);` ` ` `}` ` ` `}` ` ` ` ` `// this code is contributed by gangarajula laxmi` |

## Javascript

`<script>` ` ` `// JavaScript code for the above approach` ` ` `// To check whether the given number is divisible by 11 or not` ` ` `// input` ` ` `var` `n = 76945` ` ` ` ` `// finding given number is divisible by 11 or not` ` ` `if` `(n % 11 == 0)` ` ` `document.write(` `"Yes"` `)` ` ` `else` ` ` `document.write(` `"No"` `)` `// This code is contributed by laxmigangarajula03` ` ` `</script>` |

## PHP

`<?php` `// PHP program to check` `// if a large number is` `// divisible by 11.` ` ` `// Driver Code` ` ` `// input number` `$num` `= 76945;` `// finding given number is divisible by 11 or not` `if` `( ` `$num` `% 11 == 0)` ` ` `echo` `" divisible"` `;` `else` ` ` `echo` `"not divisible"` `;` `// This code is contributed by satwik4409.` `?>` |

**Output**

divisible

**Time complexity**: O(1) as it is doing constant operations

**Auxiliary space**: O(1)

This article is contributed by **DANISH_RAZA** . If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.