Open In App
Related Articles

Check if a large number is divisible by 6 or not

Improve Article
Improve
Save Article
Save
Like Article
Like

Given a number, the task is to check if a number is divisible by 6 or not. The input number may be large and it may not be possible to store even if we use long long int.

Examples: 

Input  : n = 2112
Output: Yes

Input : n = 1124
Output : No

Input  : n = 363588395960667043875487
Output : No

C++




#include <iostream>
using namespace std;
  
int main() {
  
    long n = 36358839596;
    
      // finding given number is divisible by 6 or not
    if (n % 6 == 0)
        cout << "Yes";
    else
        cout << "No";
    return 0;
}
  
// This code is contributed by lokesh


Java




// Java code for the above approach
// To check whether the given number is divisible by 6 or not
import java.io.*;
  
class GFG {
    public static void main (String[] args) {
        long n = 36358839596L;
   
        // finding given number is divisible by 6 or not
        if (n % 6 == 0)
              System.out.print("Yes");
        else
              System.out.print("No");
    }
}
  
// This code is contributed by lokesh


Python3




# Python code 
# To check whether the given number is divisible by 6 or not
  
#input 
n=363588395960667043875487 
# the above input can also be given as n=input() -> taking input from user
# finding given number is divisible by 6 or not
if int(n)%6==0:
  print("Yes"
else
  print("No")


C#




using System;
public class GFG {
  
  static public void Main()
  {
  
    // C# code for the above approach
    // To check whether the given number is divisible by 6 or not
  
    //input
    long n = 36358839596;
  
    // finding given number is divisible by 6 or not
    if (n % 6 == 0)
      Console.Write("Yes");
    else
      Console.Write("No");
  
  
}
  
// This code is contributed by ksrikanth0498


Javascript




<script>
        // JavaScript code for the above approach
        // To check whether the given number is divisible by 6 or not
  
        //input 
        var n = 363588395960667043875487
          
        // finding given number is divisible by 6 or not
        if (n % 6 == 0)
            document.write("Yes")
        else
            document.write("No")
    // This code is contributed by Potta Lokesh
    </script>


PHP




<?php
// PHP program to check 
// if a large number is 
// divisible by 6.
  
  // Driver Code
  // input number
$num = 363588395960667043875487;
  
// finding given number is divisible by 6 or not
if ( $num %6 == 0)
    echo "Yes";
else
    echo "No";
  
// This code is contributed by satwik4409.
?>


Output

No

Time complexity: O(1) as it is performing constant operations
Auxiliary Space: O(1) as it is using constant space for variables

Since input number may be very large, we cannot use n % 6 to check if a number is divisible by 6 or not, especially in languages like C/C++. The idea is based on following fact. 

A number is divisible by 6 it's divisible by 2 and 3. 
a)  A number is divisible by 2 if its last digit is divisible by 2.
b)  A number is divisible by 3 if sum of digits is divisible by 3.

Below is the implementation based on above steps. 

C++




// C++ program to find if a number is divisible by
// 6 or not
#include<bits/stdc++.h>
using namespace std;
  
// Function to find that number divisible by 6 or not
bool check(string str)
{
    int n = str.length();
  
    // Return false if number is not divisible by 2.
    if ((str[n-1]-'0')%2 != 0)
       return false;
  
    // If we reach here, number is divisible by 2.
    // Now check for 3.
  
    // Compute sum of digits
    int digitSum = 0;
    for (int i=0; i<n; i++)
        digitSum += (str[i]-'0');
  
    // Check if sum of digits is divisible by 3
    return (digitSum % 3 == 0);
}
  
// Driver code
int main()
{
    string str = "1332";
    check(str)?  cout << "Yes" : cout << "No ";
    return 0;
}


Java




// Java program to find if a number is
// divisible by 6 or not
import java.io.*;
class IsDivisible
{
    // Function to find that number divisible by 6 or not
    static boolean check(String str)
    {
        int n = str.length();
       
        // Return false if number is not divisible by 2.
        if ((str.charAt(n-1) -'0')%2 != 0)
           return false;
       
        // If we reach here, number is divisible by 2.
        // Now check for 3.
       
        // Compute sum of digits
        int digitSum = 0;
        for (int i=0; i<n; i++)
            digitSum += (str.charAt(i)-'0');
       
        // Check if sum of digits is divisible by 3
        return (digitSum % 3 == 0);
    }
      
    // main function
    public static void main (String[] args) 
    {
        String str = "1332";
        if(check(str))
            System.out.println("Yes");
        else
            System.out.println("No");
    }


Python3




# Python 3 program to find 
# if a number is divisible
# by 6 or not
  
# Function to find that number 
# is divisible by 6 or not
def check(st) :
    n = len(st)
      
      
    # Return false if number
    # is not divisible by 2.
    if (((int)(st[n-1])%2) != 0) :
        return False
   
    # If we reach here, number 
    # is divisible by 2. Now
    # check for 3.
   
    # Compute sum of digits
    digitSum = 0
    for i in range(0, n) :
        digitSum = digitSum + (int)(st[i])
   
    # Check if sum of digits
    # is divisible by 3
    return (digitSum % 3 == 0)
  
  
# Driver code
st = "1332"
if(check(st)) :
    print("Yes")
else :
    print("No ")
      


C#




// C# program to find if a number is
// divisible by 6 or not
using System;
  
class GFG {
      
    // Function to find that number
    // divisible by 6 or not
    static bool check(String str)
    {
        int n = str.Length;
      
        // Return false if number is
        // not divisible by 2.
        if ((str[n-1] -'0') % 2 != 0)
            return false;
      
        // If we reach here, number is
        // divisible by 2.
        // Now check for 3.
      
        // Compute sum of digits
        int digitSum = 0;
        for (int i = 0; i < n; i++)
            digitSum += (str[i] - '0');
      
        // Check if sum of digits is
        // divisible by 3
        return (digitSum % 3 == 0);
    }
      
    // main function
    public static void Main () 
    {
        String str = "1332";
          
        if(check(str))
            Console.Write("Yes");
        else
            Console.Write("No");
    }
}
  
// This code is contributed by parashar.


PHP




<?php
// PHP program to find if a 
// number is divisible by
// 6 or not
  
// Function to find that number 
// divisible by 6 or not
function check($str)
{
    $n = strlen($str);
  
    // Return false if number is
    // not divisible by 2.
    if (($str[$n - 1] - '0') % 2 != 0)
    return false;
  
    // If we reach here, number 
    // is divisible by 2.
    // Now check for 3.
    // Compute sum of digits
    $digitSum = 0;
    for ($i = 0; $i < $n; $i++)
        $digitSum += ($str[$i] - '0');
  
    // Check if sum of digits
    // is divisible by 3
    return ($digitSum % 3 == 0);
}
  
    // Driver code
    $str = "1332";
    if(check($str))
        echo "Yes" ;
    else
        echo " No ";
    return 0;
  
// This code is contributed by nitin mittal.
?>


Javascript




<script>
  
// JavaScript program for the above approach
  
    // Function to find that number 
    // divisible by 6 or not 
    function check(str) 
    
        let n = str.length; 
        
        // Return false if number is 
        // not divisible by 2. 
        if ((str[n-1] -'0') % 2 != 0) 
            return false
        
        // If we reach here, number is 
        // divisible by 2. 
        // Now check for 3. 
        
        // Compute sum of digits 
        let digitSum = 0; 
        for (let i = 0; i < n; i++) 
            digitSum += (str[i] - '0'); 
        
        // Check if sum of digits is 
        // divisible by 3 
        return (digitSum % 3 == 0); 
    
  
// Driver Code
     let str = "1332"
     if(check(str)) 
        document.write("Yes"); 
     else
        document.write("No");
  
// This code is contributed by splevel62.
</script>


Output

Yes

Time Complexity: O(logN) where N is the given number
Auxiliary Space: O(1) since no extra space is being used

This article is contributed by DANISH_RAZA . If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 

Approach#3: using the fact that it is divisible by 3 and 2 consecutive even numbers

We can check if a number is divisible by 6 by checking if it is divisible by 3 and any 2 consecutive even numbers (i.e., 2 and 4 or 4 and 6, etc.). We can use the modulo operation to find the remainder of the number when divided by 3 and check if it is divisible by any 2 consecutive even numbers.

Algorithm

1. Check if the remainder of the number when divided by 3 is 0.
2. Check if the last digit of the number is even.
3. If the last digit of the number is even, check if the second-last digit of the number is odd.
4. If the second-last digit of the number is odd, print “Yes”, otherwise print “No”.

C++




// C++ program for the above approach
#include <iostream>
using namespace std;
  
// Function to check divisibility by 6
void check_divisibility_by_6(int n)
{
    if (n % 3 == 0 && n % 10 % 2 == 0
        && (n / 10) % 10 % 2 != 0) {
        cout << "Yes" << endl;
    }
    else {
        cout << "No" << endl;
    }
}
  
// Driver Code
int main()
{
    int n1 = 2112;
    check_divisibility_by_6(n1);
  
    int n2 = 1124;
    check_divisibility_by_6(n2);
  
    return 0;
}


Java




public class Main {
  
    // Function to check divisibility by 6
    public static void check_divisibility_by_6(int n) {
        if (n % 3 == 0 && n % 10 % 2 == 0 && (n / 10) % 10 % 2 != 0) {
            System.out.println("Yes");
        } else {
            System.out.println("No");
        }
    }
  
    // Driver Code
    public static void main(String[] args) {
        int n1 = 2112;
        check_divisibility_by_6(n1);
  
        int n2 = 1124;
        check_divisibility_by_6(n2);
    }
}


Python3




def check_divisibility_by_6(n):
    if n % 3 == 0 and n % 10 % 2 == 0 and (n // 10) % 10 % 2 != 0:
        print("Yes")
    else:
        print("No")
  
  
n = 2112
check_divisibility_by_6(n)
  
n = 1124
check_divisibility_by_6(n)


Javascript




function check_divisibility_by_6(n) {
  if (n % 3 === 0 && n % 10 % 2 === 0 && Math.floor(n / 10) % 10 % 2 !== 0) {
    console.log("Yes");
  } else {
    console.log("No");
  }
}
  
let n = 2112;
check_divisibility_by_6(n);
  
n = 1124;
check_divisibility_by_6(n);


C#




using System;
  
class Program
{
    // Function to check divisibility by 6
    static void CheckDivisibilityBy6(int n)
    {
        if (n % 3 == 0 && n % 10 % 2 == 0
            && (n / 10) % 10 % 2 != 0)
        {
            Console.WriteLine("Yes");
        }
        else
        {
            Console.WriteLine("No");
        }
    }
  
    // Driver Code
    static void Main(string[] args)
    {
        int n1 = 2112;
        CheckDivisibilityBy6(n1);
  
        int n2 = 1124;
        CheckDivisibilityBy6(n2);
  
        Console.ReadKey();
    }
}


Output

Yes
No

Time Complexity: O(log n) where n is the value of the number.
Auxiliary Space: O(1).


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 13 Sep, 2023
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials