Given a number, the task is to check if a number is divisible by 6 or not. The input number may be large and it may not be possible to store even if we use long long int.
Examples:
Input : n = 2112
Output: Yes
Input : n = 1124
Output : No
Input : n = 363588395960667043875487
Output : No
C++
#include <iostream>
using namespace std;
int main() {
long n = 36358839596;
if (n % 6 == 0)
cout << "Yes" ;
else
cout << "No" ;
return 0;
}
|
Java
import java.io.*;
class GFG {
public static void main (String[] args) {
long n = 36358839596L;
if (n % 6 == 0 )
System.out.print( "Yes" );
else
System.out.print( "No" );
}
}
|
Python3
n = 363588395960667043875487
if int (n) % 6 = = 0 :
print ( "Yes" )
else :
print ( "No" )
|
C#
using System;
public class GFG {
static public void Main()
{
long n = 36358839596;
if (n % 6 == 0)
Console.Write( "Yes" );
else
Console.Write( "No" );
}
}
|
Javascript
<script>
var n = 363588395960667043875487
if (n % 6 == 0)
document.write( "Yes" )
else
document.write( "No" )
</script>
|
PHP
<?php
$num = 363588395960667043875487;
if ( $num %6 == 0)
echo "Yes" ;
else
echo "No" ;
?>
|
Time complexity: O(1) as it is performing constant operations
Auxiliary Space: O(1) as it is using constant space for variables
Since input number may be very large, we cannot use n % 6 to check if a number is divisible by 6 or not, especially in languages like C/C++. The idea is based on following fact.
A number is divisible by 6 it's divisible by 2 and 3.
a) A number is divisible by 2 if its last digit is divisible by 2.
b) A number is divisible by 3 if sum of digits is divisible by 3.
Below is the implementation based on above steps.
C++
#include<bits/stdc++.h>
using namespace std;
bool check(string str)
{
int n = str.length();
if ((str[n-1]- '0' )%2 != 0)
return false ;
int digitSum = 0;
for ( int i=0; i<n; i++)
digitSum += (str[i]- '0' );
return (digitSum % 3 == 0);
}
int main()
{
string str = "1332" ;
check(str)? cout << "Yes" : cout << "No " ;
return 0;
}
|
Java
import java.io.*;
class IsDivisible
{
static boolean check(String str)
{
int n = str.length();
if ((str.charAt(n- 1 ) - '0' )% 2 != 0 )
return false ;
int digitSum = 0 ;
for ( int i= 0 ; i<n; i++)
digitSum += (str.charAt(i)- '0' );
return (digitSum % 3 == 0 );
}
public static void main (String[] args)
{
String str = "1332" ;
if (check(str))
System.out.println( "Yes" );
else
System.out.println( "No" );
}
}
|
Python3
def check(st) :
n = len (st)
if ((( int )(st[n - 1 ]) % 2 ) ! = 0 ) :
return False
digitSum = 0
for i in range ( 0 , n) :
digitSum = digitSum + ( int )(st[i])
return (digitSum % 3 = = 0 )
st = "1332"
if (check(st)) :
print ( "Yes" )
else :
print ( "No " )
|
C#
using System;
class GFG {
static bool check(String str)
{
int n = str.Length;
if ((str[n-1] - '0' ) % 2 != 0)
return false ;
int digitSum = 0;
for ( int i = 0; i < n; i++)
digitSum += (str[i] - '0' );
return (digitSum % 3 == 0);
}
public static void Main ()
{
String str = "1332" ;
if (check(str))
Console.Write( "Yes" );
else
Console.Write( "No" );
}
}
|
PHP
<?php
function check( $str )
{
$n = strlen ( $str );
if (( $str [ $n - 1] - '0' ) % 2 != 0)
return false;
$digitSum = 0;
for ( $i = 0; $i < $n ; $i ++)
$digitSum += ( $str [ $i ] - '0' );
return ( $digitSum % 3 == 0);
}
$str = "1332" ;
if (check( $str ))
echo "Yes" ;
else
echo " No " ;
return 0;
?>
|
Javascript
<script>
function check(str)
{
let n = str.length;
if ((str[n-1] - '0' ) % 2 != 0)
return false ;
let digitSum = 0;
for (let i = 0; i < n; i++)
digitSum += (str[i] - '0' );
return (digitSum % 3 == 0);
}
let str = "1332" ;
if (check(str))
document.write( "Yes" );
else
document.write( "No" );
</script>
|
Time Complexity: O(logN) where N is the given number
Auxiliary Space: O(1) since no extra space is being used
This article is contributed by DANISH_RAZA . If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Approach#3: using the fact that it is divisible by 3 and 2 consecutive even numbers
We can check if a number is divisible by 6 by checking if it is divisible by 3 and any 2 consecutive even numbers (i.e., 2 and 4 or 4 and 6, etc.). We can use the modulo operation to find the remainder of the number when divided by 3 and check if it is divisible by any 2 consecutive even numbers.
Algorithm
1. Check if the remainder of the number when divided by 3 is 0.
2. Check if the last digit of the number is even.
3. If the last digit of the number is even, check if the second-last digit of the number is odd.
4. If the second-last digit of the number is odd, print “Yes”, otherwise print “No”.
C++
#include <iostream>
using namespace std;
void check_divisibility_by_6( int n)
{
if (n % 3 == 0 && n % 10 % 2 == 0
&& (n / 10) % 10 % 2 != 0) {
cout << "Yes" << endl;
}
else {
cout << "No" << endl;
}
}
int main()
{
int n1 = 2112;
check_divisibility_by_6(n1);
int n2 = 1124;
check_divisibility_by_6(n2);
return 0;
}
|
Java
public class Main {
public static void check_divisibility_by_6( int n) {
if (n % 3 == 0 && n % 10 % 2 == 0 && (n / 10 ) % 10 % 2 != 0 ) {
System.out.println( "Yes" );
} else {
System.out.println( "No" );
}
}
public static void main(String[] args) {
int n1 = 2112 ;
check_divisibility_by_6(n1);
int n2 = 1124 ;
check_divisibility_by_6(n2);
}
}
|
Python3
def check_divisibility_by_6(n):
if n % 3 = = 0 and n % 10 % 2 = = 0 and (n / / 10 ) % 10 % 2 ! = 0 :
print ( "Yes" )
else :
print ( "No" )
n = 2112
check_divisibility_by_6(n)
n = 1124
check_divisibility_by_6(n)
|
Javascript
function check_divisibility_by_6(n) {
if (n % 3 === 0 && n % 10 % 2 === 0 && Math.floor(n / 10) % 10 % 2 !== 0) {
console.log( "Yes" );
} else {
console.log( "No" );
}
}
let n = 2112;
check_divisibility_by_6(n);
n = 1124;
check_divisibility_by_6(n);
|
C#
using System;
class Program
{
static void CheckDivisibilityBy6( int n)
{
if (n % 3 == 0 && n % 10 % 2 == 0
&& (n / 10) % 10 % 2 != 0)
{
Console.WriteLine( "Yes" );
}
else
{
Console.WriteLine( "No" );
}
}
static void Main( string [] args)
{
int n1 = 2112;
CheckDivisibilityBy6(n1);
int n2 = 1124;
CheckDivisibilityBy6(n2);
Console.ReadKey();
}
}
|
Time Complexity: O(log n) where n is the value of the number.
Auxiliary Space: O(1).
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!